Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The pertussis pathogen – new findings

23.06.2015

The worldwide spreading of the whooping cough, also known as pertussis, has substantially increased since 2010. Researchers from the Biozentrum, University of Basel, have investigated structure and function of an important membrane protein of the bacterium causing pertussis. They discovered that the protein structure differs from a previously postulated model. Their findings, published in “Nature Communications”, provide a basis for new treatment approaches for the infection.

Many tiny protein pores are found in the outer membrane of the pertussis pathogen, the bacterium Bordetella pertussis. Through these pores, the pathogen secretes proteins, which are important for bacterial attachment in the human respiratory tract and for the formation of resistant biofilms.

In order to understand how membrane pores allow passage of their substrates, the structural biologists Prof. Timm Maier und Prof. Sebastian Hiller from the Biozentrum of the University of Basel, have taken a closer look at one of these proteins.

Membrane protein structure different than expected

Cellular membranes are barriers, which protect the cell from the outside world. Certain molecules can however still move across these barriers at specifically designed sites. The membrane protein FhaC in the pertussis pathogen is such a border guard. It is located on the outer cell membrane and channels the adhesin FHA across the membrane to the outside. FHA allows the bacterium to attach to host surfaces and thus plays an important role in the pertussis infection.

In 2007, the structure and function of FhaC had been published in Science. In the light of the new study, those findings have now been partly revised. “On the basis of our data, we have concluded that the previously postulated structure and mode of action of the FhaC protein required revision”, says Maier. Together with the authors of the original article, the researchers at the Biozentrum have now corrected the FhaC model.

“In contrast to earlier assumptions, our investigations have shown that the FhaC protein has the same architecture as proteins that integrate new membrane proteins”, explains Maier. The structural analysis also revealed how a helical protein domain acts like a plug, closing the pore in the absence of a cognate substrate. When the FHA adhesin binds to the membrane protein FhaC, this plug is released, the pore opens and the adhesion traverses the membrane.

A basis for new pertussis treatments

Pertussis disease is well controlled in Switzerland, but nonetheless, its occurrence is increasing since 2010. This calls for new treatment approaches. “Targeted inhibitors could significantly impair the FhaC function to prevent the pathogen from attaching to the host cell”, explains Maier. “The advantage is obvious: Antibiotic use can be avoided thus preventing the development of resistance.” The structural biologists aim to provide further fundamental insights in the future. Their plan is to investigate the role of individual protein components in the overall process of substrate channeling.

Original source
Timm Maier, Bernard Clantin, Fabian Gruss, Frédérique Dewitte, Anne-Sophie Delattre, Françoise Jacob-Dubuisson, Sebastian Hiller & Vincent Villeret
Conserved Omp85 lid-lock structure and substrate recognition in FhaC
Nature Communications; published online 10 June 2015, doi: 10.1038/ncomms8452

Further information
Prof. Timm Maier, University of Basel, Biozentrum, phone: +41 61 267 21 76, email: timm.maier@unibas.ch

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/The-pertussis-pathogen-ne...

Katrin Bühler | Universität Basel

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>