Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The malaria pathogen’s cellular skeleton under a super-microscope

18.04.2014

A first step towards tailor-made drugs against the infectious disease

The tropical disease malaria is caused by the Plasmodium parasite. For its survival and propagation, Plasmodium requires a protein called actin. Scientists of the Helmholtz Centre for Infection Research (HZI) in Germany used high-resolution structural biology methods to investigate the different versions of this protein in the parasite in high detail.


The Anopheles mosquito transmits the Plasmodium parasite, which causes malaria.

CDC/James Gathany

Their results, published in the scientific journal “PLOS Pathogens”, may in the future contribute to the development of tailor-made drugs against malaria–a disease, that causes more than half a million deaths per year.

Malaria is a life-threatening disease. According to World Health Organization estimates, around 207 million cases of malaria occurred in 2012. Children in Africa are at an especially high risk, and there is no approved vaccination to date.

The disease is caused by Plasmodium parasites–single-celled parasites, which are transmitted by mosquitos. The pathogen enters the human body through a bite and induces typical symptoms like periodic fevers, nausea, and headaches.

To enter human cells and leave them again, the parasites need to be motile. To this end, they use a structural protein called actin. Actin is found in nearly all living organisms where it is one of the most abundant proteins. Inside cells, it assumes numerous tasks: It confers stability, allows cell division, and makes movement of single cells possible.

The dynamical behaviour needed for these processes is enabled by individual globular actin molecules assembling together to form thread-like structures called filaments. The malaria parasite possesses two versions of actin, actin I and actin II, which differ substantially from each other. Even though these structural proteins are crucial for the pathogen’s infectivity, researchers have so far not been able to demonstrate filament formation in the parasite.

Scientists of the HZI, the German Electron Synchrotron (DESY) and the European Molecular Biology Laboratory (EMBL), together with international partners, now succeeded in detecting filament assembly of the parasite actin II proteins. For this, they used electron microscopy, which overcomes the resolution limit of classical light microscopy.

Male malaria parasites from which the scientists had deleted actin II were not able to form mature germ cells and consequently could not reproduce and propagate. To have only one actin variant is apparently not sufficient for this process. How filaments contribute to germ cell maturation is still unclear. But why do the two proteins show such different behaviour?

To answer this question, the research team deciphered the structure of the globular actin proteins using X-radiation. “We were able to determine the structures of actin I and actin II at very high resolutions–down to 1.3 and 2.2 Ångström, respectively. With this, we are in the range of single atoms,” says the project leader Prof Inari Kursula.

“The structures show us that the two variants differ more from each other than actins in any other known living organism do.” The high resolution enabled the researchers to identify areas within the proteins that cause the different behaviour. “We now understand that Plasmodium actin filaments are very different from other actin filaments, like for example from those found in humans, and that they are assembled in a very different manner. Now that we know the structural basis for this, we can look for ways to specifically interfere with the parasite cytoskeleton,” says Kursula. This knowledge might in the future contribute to designing tailor-made anti-malarial medication.

Original publication
Juha Vahokoski, Saligram Prabhakar Bhargav, Ambroise Desfosses, Maria Andreadaki, Esa-Pekka Kumpula, Silvia Muñico Martinez, Alexander Ignatev, Simone Lepper, Friedrich Frischknecht, Inga Sidén-Kiamos, Carsten Sachse, and Inari Kursula
Structural Differences Explain Diverse Functions of Plasmodium Actins
PLOS Pathogens, 2014, http://dx.plos.org/10.1371/journal.ppat.1004091

The junior research group “Structural Biology of the Cytoskeleton” at the interdisciplinary Centre for Structural Systems Biology (CSSB) investigates the cytoskeleton– a flexible network of proteins, which plays an important role in the motility and host cell entry of many pathogens. The scientists are especially interested in how Plasmodium, the malaria pathogen, uses its cytoskeleton for this purpose.

The Helmholtz Centre for Infection Research (HZI)
Scientists at the Helmholtz Centre for Infection Research in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines.
http://www.helmholtz-hzi.de

Weitere Informationen:

http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/das_zellsk... - This press release on www.helmholtz-hzi.de

Dr. Birgit Manno | Helmholtz-Zentrum

Further reports about: Biology HZI Helmholtz Helmholtz-Zentrum Infection Plasmodium actin filaments parasite parasites proteins skeleton structures

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>