Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The malaria pathogen’s cellular skeleton under a super-microscope

18.04.2014

A first step towards tailor-made drugs against the infectious disease

The tropical disease malaria is caused by the Plasmodium parasite. For its survival and propagation, Plasmodium requires a protein called actin. Scientists of the Helmholtz Centre for Infection Research (HZI) in Germany used high-resolution structural biology methods to investigate the different versions of this protein in the parasite in high detail.


The Anopheles mosquito transmits the Plasmodium parasite, which causes malaria.

CDC/James Gathany

Their results, published in the scientific journal “PLOS Pathogens”, may in the future contribute to the development of tailor-made drugs against malaria–a disease, that causes more than half a million deaths per year.

Malaria is a life-threatening disease. According to World Health Organization estimates, around 207 million cases of malaria occurred in 2012. Children in Africa are at an especially high risk, and there is no approved vaccination to date.

The disease is caused by Plasmodium parasites–single-celled parasites, which are transmitted by mosquitos. The pathogen enters the human body through a bite and induces typical symptoms like periodic fevers, nausea, and headaches.

To enter human cells and leave them again, the parasites need to be motile. To this end, they use a structural protein called actin. Actin is found in nearly all living organisms where it is one of the most abundant proteins. Inside cells, it assumes numerous tasks: It confers stability, allows cell division, and makes movement of single cells possible.

The dynamical behaviour needed for these processes is enabled by individual globular actin molecules assembling together to form thread-like structures called filaments. The malaria parasite possesses two versions of actin, actin I and actin II, which differ substantially from each other. Even though these structural proteins are crucial for the pathogen’s infectivity, researchers have so far not been able to demonstrate filament formation in the parasite.

Scientists of the HZI, the German Electron Synchrotron (DESY) and the European Molecular Biology Laboratory (EMBL), together with international partners, now succeeded in detecting filament assembly of the parasite actin II proteins. For this, they used electron microscopy, which overcomes the resolution limit of classical light microscopy.

Male malaria parasites from which the scientists had deleted actin II were not able to form mature germ cells and consequently could not reproduce and propagate. To have only one actin variant is apparently not sufficient for this process. How filaments contribute to germ cell maturation is still unclear. But why do the two proteins show such different behaviour?

To answer this question, the research team deciphered the structure of the globular actin proteins using X-radiation. “We were able to determine the structures of actin I and actin II at very high resolutions–down to 1.3 and 2.2 Ångström, respectively. With this, we are in the range of single atoms,” says the project leader Prof Inari Kursula.

“The structures show us that the two variants differ more from each other than actins in any other known living organism do.” The high resolution enabled the researchers to identify areas within the proteins that cause the different behaviour. “We now understand that Plasmodium actin filaments are very different from other actin filaments, like for example from those found in humans, and that they are assembled in a very different manner. Now that we know the structural basis for this, we can look for ways to specifically interfere with the parasite cytoskeleton,” says Kursula. This knowledge might in the future contribute to designing tailor-made anti-malarial medication.

Original publication
Juha Vahokoski, Saligram Prabhakar Bhargav, Ambroise Desfosses, Maria Andreadaki, Esa-Pekka Kumpula, Silvia Muñico Martinez, Alexander Ignatev, Simone Lepper, Friedrich Frischknecht, Inga Sidén-Kiamos, Carsten Sachse, and Inari Kursula
Structural Differences Explain Diverse Functions of Plasmodium Actins
PLOS Pathogens, 2014, http://dx.plos.org/10.1371/journal.ppat.1004091

The junior research group “Structural Biology of the Cytoskeleton” at the interdisciplinary Centre for Structural Systems Biology (CSSB) investigates the cytoskeleton– a flexible network of proteins, which plays an important role in the motility and host cell entry of many pathogens. The scientists are especially interested in how Plasmodium, the malaria pathogen, uses its cytoskeleton for this purpose.

The Helmholtz Centre for Infection Research (HZI)
Scientists at the Helmholtz Centre for Infection Research in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines.
http://www.helmholtz-hzi.de

Weitere Informationen:

http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/das_zellsk... - This press release on www.helmholtz-hzi.de

Dr. Birgit Manno | Helmholtz-Zentrum

Further reports about: Biology HZI Helmholtz Helmholtz-Zentrum Infection Plasmodium actin filaments parasite parasites proteins skeleton structures

More articles from Life Sciences:

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

nachricht Bio-fabrication of Artificial Blood Vessels with Laser Light
28.08.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>