Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The link between circadian clock and stress


There are two phenomena which basically determine the lives of all organisms: the continuous day-and-night cycle and the occurrence of sudden events. To respond adequately to this, organisms have developed special mechanisms that have one surprising thing in common.

The continuous 24-hour day-and-night cycle and the unexpected occurrence of sudden events: These two factors determine the lives of nearly all organisms on Earth: from protozoa to humans. Both require totally different responses.

This has led to the development of different response patterns with the associated genetic bases in the course of evolution. On the one hand, so-called circadian clocks prepare the organism for the regularly recurring requirements of everyday life. On the other hand, the stress system is activated whenever an unexpected result calls for a quick response.

Great stress disturbs the day-and-night cycle

But despite these differences, recent research results have shown that these systems also share characteristics which link them. Many people probably know this from their own experience: They respond differently to stress depending on the time of day. On the other hand, high stress levels disturb their day-and-night rhythm and affects sleep.

The molecular and cellular details of these common characteristics have been unknown until recently. Scientists of the University of Würzburg have now successfully identified one of these connecting elements. Chronobiologist Charlotte Helfrich-Förster and her team pinpointed a special enzyme, the p38 mitogen-activated protein kinase, which plays a major role in both signal pathways. The scientists present their work in the PLOS Genetics journal.

A chronobiology specialist

"p38 has been known to be a key component of the immune and stress signal pathways for quite some time. We have now demonstrated for the first time that the enzyme also forms part of the central circadian clock where it assumes key functions," Charlotte Helfrich-Förster interprets the result of her study. She is a professor at the Department of Neurobiology and Genetics at the University of Würzburg and has specialised in chronobiology which studies the effect of time on living systems. She is also the spokeswoman of the collaborative research centre "Insect timing: mechanisms, plasticity and interactions" which was set up in early 2013 to study how circadian clocks work in animals, among others.

The Würzburg biologist investigated the role of p38 in the fruit fly Drosophila melanogaster. The insect is a suitable candidate because many of its brain and nerve functions are similar to those of humans – even though it has only around 80,000 neurons, which is much less than humans who have approximately 100 billion. Moreover, Drosophila is comparatively easy to manipulate genetically, allowing researches to selectively disable single proteins, for example, to study the effects.

Studying the fruit fly's circadian clock

Charlotte Helfrich-Förster and her team used the same approach for the present study. In a first step, they used immunohistochemical methods to investigate whether the enzyme exists in the circadian clock system of fruit flies in the first place. This system is composed of approximately 150 "clock neurons" in the fly's brain divided into nine subgroups. The two known variants of p38 were found to be active in several of these neurons, albeit not in all of them.

In the next phase, the researchers knocked out or overexpressed the two p38 variants in different combinations, i.e. increased their concentration above the usual level, and studied the impact on the behaviour of the flies. Some of the results were as expected; others, however, delivered surprising outcomes.

Impact of the enzyme in the cells of the circadian clock

What the researchers had not expected: "p38 is particularly active in the fruit fly's cells when it is dark. It is inactive during daytime," says Charlotte Helfrich-Förster. Even though the genes responsible for generating the enzymes work throughout the entire day, activation of the enzyme is subject to a time rhythm and light is capable of stopping the activation process completely.

p38 also affects the evening activities of the fly and its 24-hour rhythm. When the scientists reduced the p38 activity in special clock neurons, the flies postponed their active phase in the evening; their 24-hour rhythm extended to more than 25 hours. The same happened after the researchers had increased the p38 concentration, which also came as a surprise, since they had expected just the opposite effect. "There is probably an optimum level of this p38 variant and any variation in whatever direction has the same effect," Charlotte Helfrich-Förster interprets the finding.

The link between the stress system and the circadian clock

"These results allow the conclusion that the p38 mitogen-activated protein kinase is a crucial component of the circadian clock of Drosophila," the researchers sum up the results of their work.

The scientists teamed up with the research group of Thomas Raabe, Professor for Molecular Genetics at the Department of Medical Radiology and Cell Biology of the University of Würzburg, which also participates in the "Insect Timing" collaborative research centre. Together they were even able to show that p38 regulates the clock protein Period, thereby directly influencing the speed of regular molecular changes. "This can explain why the flies postpone their activity and the rhythm extends to 25 hours when manipulating p38," the researchers further say.

And since stress equally activates p38, it might thus readjust the circadian clock. The p38 MAP kinase is thus the link between the stress system and the circadian clock.

The MAP Kinase p38 Is Part of Drosophila melanogaster's Circadian Clock. Verena Dusik, Pingkalai R. Senthilan, Benjamin Mentzel, Heiko Hartlieb, Corinna Wülbeck, Taishi Yoshii, Thomas Raabe, Charlotte Helfrich-Förster.


Prof. Dr. Charlotte Förster, Phone: +49 931 31-88823,

Weitere Informationen:

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>