Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The link between circadian clock and stress

19.09.2014

There are two phenomena which basically determine the lives of all organisms: the continuous day-and-night cycle and the occurrence of sudden events. To respond adequately to this, organisms have developed special mechanisms that have one surprising thing in common.

The continuous 24-hour day-and-night cycle and the unexpected occurrence of sudden events: These two factors determine the lives of nearly all organisms on Earth: from protozoa to humans. Both require totally different responses.

This has led to the development of different response patterns with the associated genetic bases in the course of evolution. On the one hand, so-called circadian clocks prepare the organism for the regularly recurring requirements of everyday life. On the other hand, the stress system is activated whenever an unexpected result calls for a quick response.

Great stress disturbs the day-and-night cycle

But despite these differences, recent research results have shown that these systems also share characteristics which link them. Many people probably know this from their own experience: They respond differently to stress depending on the time of day. On the other hand, high stress levels disturb their day-and-night rhythm and affects sleep.

The molecular and cellular details of these common characteristics have been unknown until recently. Scientists of the University of Würzburg have now successfully identified one of these connecting elements. Chronobiologist Charlotte Helfrich-Förster and her team pinpointed a special enzyme, the p38 mitogen-activated protein kinase, which plays a major role in both signal pathways. The scientists present their work in the PLOS Genetics journal.

A chronobiology specialist

"p38 has been known to be a key component of the immune and stress signal pathways for quite some time. We have now demonstrated for the first time that the enzyme also forms part of the central circadian clock where it assumes key functions," Charlotte Helfrich-Förster interprets the result of her study. She is a professor at the Department of Neurobiology and Genetics at the University of Würzburg and has specialised in chronobiology which studies the effect of time on living systems. She is also the spokeswoman of the collaborative research centre "Insect timing: mechanisms, plasticity and interactions" which was set up in early 2013 to study how circadian clocks work in animals, among others.

The Würzburg biologist investigated the role of p38 in the fruit fly Drosophila melanogaster. The insect is a suitable candidate because many of its brain and nerve functions are similar to those of humans – even though it has only around 80,000 neurons, which is much less than humans who have approximately 100 billion. Moreover, Drosophila is comparatively easy to manipulate genetically, allowing researches to selectively disable single proteins, for example, to study the effects.

Studying the fruit fly's circadian clock

Charlotte Helfrich-Förster and her team used the same approach for the present study. In a first step, they used immunohistochemical methods to investigate whether the enzyme exists in the circadian clock system of fruit flies in the first place. This system is composed of approximately 150 "clock neurons" in the fly's brain divided into nine subgroups. The two known variants of p38 were found to be active in several of these neurons, albeit not in all of them.

In the next phase, the researchers knocked out or overexpressed the two p38 variants in different combinations, i.e. increased their concentration above the usual level, and studied the impact on the behaviour of the flies. Some of the results were as expected; others, however, delivered surprising outcomes.

Impact of the enzyme in the cells of the circadian clock

What the researchers had not expected: "p38 is particularly active in the fruit fly's cells when it is dark. It is inactive during daytime," says Charlotte Helfrich-Förster. Even though the genes responsible for generating the enzymes work throughout the entire day, activation of the enzyme is subject to a time rhythm and light is capable of stopping the activation process completely.

p38 also affects the evening activities of the fly and its 24-hour rhythm. When the scientists reduced the p38 activity in special clock neurons, the flies postponed their active phase in the evening; their 24-hour rhythm extended to more than 25 hours. The same happened after the researchers had increased the p38 concentration, which also came as a surprise, since they had expected just the opposite effect. "There is probably an optimum level of this p38 variant and any variation in whatever direction has the same effect," Charlotte Helfrich-Förster interprets the finding.

The link between the stress system and the circadian clock

"These results allow the conclusion that the p38 mitogen-activated protein kinase is a crucial component of the circadian clock of Drosophila," the researchers sum up the results of their work.

The scientists teamed up with the research group of Thomas Raabe, Professor for Molecular Genetics at the Department of Medical Radiology and Cell Biology of the University of Würzburg, which also participates in the "Insect Timing" collaborative research centre. Together they were even able to show that p38 regulates the clock protein Period, thereby directly influencing the speed of regular molecular changes. "This can explain why the flies postpone their activity and the rhythm extends to 25 hours when manipulating p38," the researchers further say.

And since stress equally activates p38, it might thus readjust the circadian clock. The p38 MAP kinase is thus the link between the stress system and the circadian clock.

The MAP Kinase p38 Is Part of Drosophila melanogaster's Circadian Clock. Verena Dusik, Pingkalai R. Senthilan, Benjamin Mentzel, Heiko Hartlieb, Corinna Wülbeck, Taishi Yoshii, Thomas Raabe, Charlotte Helfrich-Förster.

Contact

Prof. Dr. Charlotte Förster, Phone: +49 931 31-88823, charlotte.foerster@biozentrum.uni-wuerzburg.de

Weitere Informationen:

http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004565

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>