Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Kitchen Sponge – Breeding Ground for Germs

20.07.2017

The first comprehensive study of contamination in used kitchen sponges worldwide has just been published. The high concentration of bacteria found in these cleaning materials is partially cause for concern. Washing the sponge in hot water or putting it in the microwave is not a long-term solution, say the researchers.

In Germany there are around 40 million private households. “If each has one or two kitchen sponges then the total number is around 40 to 80 million,” says Professor Dr. Markus Egert of Furtwangen University who headed up the study. “If you include institutional facilities, you are probably talking about more than 100 million in Germany.” One hundred million potential germ breeders.


Analysis of bacteria in sponge sample. Maximum projections of confocal stacks, showing EUB338MIX–stained bacteria in red (A and E) and sponge autofluorescence in cyan (B and F)

Scientific Reports

The study was a cooperative project between Furtwangen University (HFU), the Justus Liebig University in Gießen and the Helmholtz Centre in Munich; HFU funded the project. The study has now been published in the prestigious scientific journal “Scientific Reports” which belongs to the Nature Publishing Group. (DOI:10.1038/s41598-017-06055-9 1, www.nature.com/scientificreports, Title: Microbiome analysis and confocal microscopy of used kitchen sponges reveal massive colonization by Acinetobacter, Moraxella and Chryseobacterium species).

The microbiologists put 14 used sponges from the Villingen-Schenningen area under the microscope. They found 362 different types of bacteria. “What surprised us was that five of the ten which we most commonly found, belong to the so-called risk group 2, which means they are potential pathogens,” explained Egert.

These are environmental and water bacteria, but also bacteria which are typical for the human skin. Particularly for people with a weak immune system such as patients and the elderly, bacteria such as Acinetobacter johnsonii, Moraxella osoloensis and Chryseobacterium hominis can lead to infections. The very commonly found Moraxella osloensis bacteria can also cause kitchen sponges to stink. Faecal bacteria and those which cause food poisoning or dysentery however, were scarcely detected.

However the real cause for concern is: in sponges which according to their users were regularly cleaned either in the microwave or through washing, showed considerably higher levels of potentially pathogenic bacteria. The scientists assume that the cleaning of the sponges can lead to a short-term decrease in the number of germs; obviously in the quickly regrowing communities however, the potentially pathogenic bacteria achieve an ever stronger domination, probably due to a higher stress tolerance.

Kitchen sponges are mainly made of foam material, such as polyurethane. Due to their multiple pores, the huge inner surface area offers microorganisms a lot of space to grow. “Sometimes the bacteria achieved a concentration of more than 5 times 1010 cells per cubic centimetre,” explained Egert. “Those are concentrations which one would normally only find in faecal samples.

And levels which should never be reached in a kitchen. These high concentrations can be explained by the optimal conditions the bacteria find in the sponge: besides the large surface area for growth, there are high levels of moisture and nutrients from food residue and dirt. The photographic and film material from the study is impressive proof of the bacterial contamination of the kitchen sponges and can thus be used as teaching material to raise awareness for kitchen sponges as microbial incubators in the household.

Problems can arise particularly in sensitive environments - in hospitals, retirement homes or in private houses, if patients with weak immune systems are nursed at home. Instead of frequent washing, for hygienic reasons it is better to throw kitchen sponges away regularly, approximately once a week. Incidentally, the researchers could not detect any microbial contamination in newly bought sponges.

Weitere Informationen:

https://www.nature.com/articles/s41598-017-06055-9

Jutta Neumann | idw - Informationsdienst Wissenschaft
Further information:
http://www.hs-furtwangen.de

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>