Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Interior of a Cell from a Moving Protein’s Point of View


Heidelberg scientists develop new methods to measure intracellular protein movement

Numerous obstacles posed by cellular structures hinder protein movements within the cell. Researchers from Heidelberg University and the German Cancer Research Center have succeeded in mapping the intracellular topology by observing proteins in living cells on multiple time and length scales.

By developing a new fluorescence microscopy-based technique, the researchers were able to measure how long it takes proteins to move over distances ranging from 0.2 to 3 micrometres in living cells. Under the direction of Dr. Karsten Rippe, the team analysed the data and developed a mathematical model to reconstruct the intracellular structures. The results of their research were published in “Nature Communications”.

Cellular structures such as membranes, the cytoskeleton and the DNA genome form a dynamic three-dimensional maze inside the cell. Proteins have to find their way through it to reach the sites where they are active. Accordingly, the spatial structure of the cell’s interior is a key factor for protein transport and cell function. “Cellular structures have been visualized in many microscopic studies.

But it is still unclear how the diffusing protein in the cell ‘senses’ this internal network of obstacles,” says Dr. Rippe. To address this question, his team devised a method to infer the cellular topology from the random motion of proteins. The team built their own fluorescence spectroscopy system to observe fluorescent proteins. According to Karsten Rippe, the largest obstacles were densely packed areas of DNA in the cell nucleus.

“A protein in a cell moves much like a marble in a labyrinth game, jockeying its way through the maze,” said Michael Baum, the study’s first author, who pursued the research as part of his PhD thesis at Heidelberg University. The marbles move easily over short distances, but then they encounter an obstacle and are slowed down as they move along.

This results in “stop-and-go” travelling with reduced average speed over longer distances. In their analysis of protein movements, the Heidelberg researchers mapped distances and corresponding translocation times needed for this travel, resulting in the average distance between obstacles. A mathematical model based on this data allowed the scientists to describe the measured movement of the proteins in the cell and reconstruct its topology – at a significantly better resolution than currently possible with light microscopy images, as Dr. Rippe points out.

“The obstacle structure encountered by a protein moving through the cell is porous, much like a sponge,” explains the Heidelberg researcher. Larger proteins were occasionally trapped in this dynamic structure for several minutes. Furthermore, drugs used in chemotherapy or to treat malaria were found to affect the mobility of proteins in the nucleus and make the DNA thicket more permeable. Dr. Rippe and his team now plan to apply their new approach in further experiments at the BioQuant Centre of Heidelberg University and the German Cancer Research Center. They will focus on the interrelation between drug-induced changes in the cell structure and protein transport as well as the disease-related deregulation of this process.

Funding for the research was provided by the Federal Ministry of Education and Research.

Additional information:

Original publication:
M. Baum, F. Erdel, M. Wachsmuth & K. Rippe: Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells. Nature Communications 5, 4494 (24 July 2014), doi: 10.1038/ncomms5494

Dr. Karsten Rippe
BioQuant Centre
Phone: +49 6221 54-51376

Communications and Marketing
Press Office
Phone: +49 6221 542311

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Further reports about: BioQuant Cancer Cell DNA Interior Nature Phone fluorescence movements proteins structure structures topology

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>