Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Interior of a Cell from a Moving Protein’s Point of View

11.08.2014

Heidelberg scientists develop new methods to measure intracellular protein movement

Numerous obstacles posed by cellular structures hinder protein movements within the cell. Researchers from Heidelberg University and the German Cancer Research Center have succeeded in mapping the intracellular topology by observing proteins in living cells on multiple time and length scales.

By developing a new fluorescence microscopy-based technique, the researchers were able to measure how long it takes proteins to move over distances ranging from 0.2 to 3 micrometres in living cells. Under the direction of Dr. Karsten Rippe, the team analysed the data and developed a mathematical model to reconstruct the intracellular structures. The results of their research were published in “Nature Communications”.

Cellular structures such as membranes, the cytoskeleton and the DNA genome form a dynamic three-dimensional maze inside the cell. Proteins have to find their way through it to reach the sites where they are active. Accordingly, the spatial structure of the cell’s interior is a key factor for protein transport and cell function. “Cellular structures have been visualized in many microscopic studies.

But it is still unclear how the diffusing protein in the cell ‘senses’ this internal network of obstacles,” says Dr. Rippe. To address this question, his team devised a method to infer the cellular topology from the random motion of proteins. The team built their own fluorescence spectroscopy system to observe fluorescent proteins. According to Karsten Rippe, the largest obstacles were densely packed areas of DNA in the cell nucleus.

“A protein in a cell moves much like a marble in a labyrinth game, jockeying its way through the maze,” said Michael Baum, the study’s first author, who pursued the research as part of his PhD thesis at Heidelberg University. The marbles move easily over short distances, but then they encounter an obstacle and are slowed down as they move along.

This results in “stop-and-go” travelling with reduced average speed over longer distances. In their analysis of protein movements, the Heidelberg researchers mapped distances and corresponding translocation times needed for this travel, resulting in the average distance between obstacles. A mathematical model based on this data allowed the scientists to describe the measured movement of the proteins in the cell and reconstruct its topology – at a significantly better resolution than currently possible with light microscopy images, as Dr. Rippe points out.

“The obstacle structure encountered by a protein moving through the cell is porous, much like a sponge,” explains the Heidelberg researcher. Larger proteins were occasionally trapped in this dynamic structure for several minutes. Furthermore, drugs used in chemotherapy or to treat malaria were found to affect the mobility of proteins in the nucleus and make the DNA thicket more permeable. Dr. Rippe and his team now plan to apply their new approach in further experiments at the BioQuant Centre of Heidelberg University and the German Cancer Research Center. They will focus on the interrelation between drug-induced changes in the cell structure and protein transport as well as the disease-related deregulation of this process.

Funding for the research was provided by the Federal Ministry of Education and Research.

Additional information:
http://malone.bioquant.uni-heidelberg.de

Original publication:
M. Baum, F. Erdel, M. Wachsmuth & K. Rippe: Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells. Nature Communications 5, 4494 (24 July 2014), doi: 10.1038/ncomms5494

Contact:
Dr. Karsten Rippe
BioQuant Centre
Phone: +49 6221 54-51376
Karsten.Rippe@bioquant.uni-heidelberg.de

Communications and Marketing
Press Office
Phone: +49 6221 542311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Further reports about: BioQuant Cancer Cell DNA Interior Nature Phone fluorescence movements proteins structure structures topology

More articles from Life Sciences:

nachricht How to become a T follicular helper cell
31.07.2015 | La Jolla Institute for Allergy and Immunology

nachricht Heating and cooling with light leads to ultrafast DNA diagnostics
31.07.2015 | University of California - Berkeley

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>