Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The grass really is greener on TV and computer screens, thanks to quantum dots

11.08.2014

High-tech specks called quantum dots could bring brighter, more vibrant color to mass market TVs, tablets, phones and other displays. Today, a scientist will describe a new technology called 3M quantum dot enhancement film (QDEF) that efficiently makes liquid crystal display (LCD) screens more richly colored.

His talk will be one of nearly 12,000 presentations at the 248th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society, taking place here through Thursday.


Quantum dots make greens and reds pop on screens (left) compared with other types of displays (right).

Credit: 3M

"Green grass just pops out at you from these displays," says Eric Nelson, Ph.D., who helped create the plastic films that hold the quantum dots in a screen. "We believe this is the most efficient way to get to a high-color display."

That's because quantum dot, or "QD," displays need less energy compared to other high-color options. QDs are superconducting crystals so small that 10,000 could fit across the width of a human hair.

... more about:
»LCD »QDs »break »diodes »grass »plastic »quantum dots »specific

Almost all electronics sold today, from TVs to smartphones, use LCDs. A typical LCD works by shining white light through a series of fliters that produce the colors the viewer sees. To achieve the best color, these filters need to be fairly dark. However, it takes a lot of energy to make the light bright enough for the viewer's eye. The other problem, says Nelson, who is at the 3M Company, is that "you always tend to leak a bit of green into red, and blue into green, and so forth. So instead of ending up with a very pure red, you end up with an orange-y color. It's difficult to get roses or apples to look very red on a conventional LCD."

Rather than filtering light, QDs change it into a different color. The dots — made for 3M by Nanosys, Inc. — produce specific colors of light based on how big they are. In 3M QDEF displays, the LCD's white backlight is replaced with a blue one, and a sheet of plastic embedded with QDs that produce red and green light is placed over it. The display combines these three colors to produce all the colors the viewer sees.

One drawback of the dots is that they break down quickly when exposed to water and oxygen in the air. To address this challenge, Nelson helped create the plastic sheathing that protects them. They sandwiched the QDs between two polymer films, with the QDs embedded in an epoxy glue. "The polymer/quantum dot sandwich looks like a piece of plastic film," says Nelson. Coatings on the film provide further protection and enhance the viewing experience.

Nelson also will describe the environmental advantages of the technology. Because the QDEF displays need less light, they consume less electricity and help device batteries last longer than other high-color solutions. He says 3M's tests have shown that the dots' heavy metals — many of which are already found in today's electronics — are entirely sealed inside the film. That means they won't leach out during the products' lifetime or as they languish in landfills if the displays aren't recycled.

3M hopes QDEF technology will compete well with more costly displays like those that use organic light-emitting diodes (OLEDs). Nelson explains that OLEDs produce similarly brilliant colors to the QDEF displays, but they use individual lights to make different colors. The drawback to OLEDs is that they are much more costly to manufacture.

Although QDEF displays are more expensive than conventional low-color LCDs, Nelson says the cost will come down as the technology becomes more widespread and as manufacturing costs come down with increased production scale. Several devices featuring QDEF are already on the market, and more are on the way.

Michael Bernstein | Eurek Alert!

Further reports about: LCD QDs break diodes grass plastic quantum dots specific

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>