Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The geometry of RNA

30.10.2014

A new method simplifies the analysis of RNA structure

Messenger, transfer, ribosomal... there's more than one type of RNA. The difference lies not only in the sequence of the nucleotides, the "beads" that form the strand, but also in the three-dimensional structure that this long molecule takes on.


This image shows a three-dimensional distribution of nucleobases obtained from the crystal structure of a ribosomal RNA molecule. Different colours correspond to the different interaction types: Watson-Crick pairs in red/orange, non-canonical interactions in blue, stacked pairs in green.

Credit: SISSA

Computer models are often used to reveal this structure but these tend to be rather complex, and they vary depending on the field of application. A team of SISSA scientists used numerical techniques to develop a new "geometrical" model which has the advantage of being much simpler and faster than those traditionally used as well as having cross-sectional applications to different fields of study. The method proved to be effective and robust in the tests.

RNA, just like DNA, is a long chain composed of nucleotides, the building blocks that contain nucleobases, the "letters" that encode the information contained in these molecules. "It's relatively easy to discover the nucleotide sequence of an RNA molecule using standard experimental techniques", explains Giovanni Bussi, a professor at SISSA. "What's more difficult is to discover the shape of the molecule, but this is often crucial if we want to understand its function".

The method devised by Bussi and colleagues has the advantage of being based on very simple rules, and it has shown to be less cumbersome than the other computational methods currently used in laboratories. "Our technique looks at the relative position of nucleotides, their geometry, and, on this basis, it is able to classify the molecules according to their structure".

"We ran a series of tests on the method" comments Sandro Bottaro of SISSA and first author of the paper published in the scientific journal Nucleic Acid Research. "For example, we constructed a scoring function. In practice, having to compare different possible predictions of RNA structure, the scoring function provides a measure of the accuracy of each prediction. There are many ways to do this depending on the field of application. We assessed the reliability of our method, finding that it performed as well as and, in some cases, even better than conventional methods, which are, however, considerably more complex".

This means that, as well as being simpler than average, the method is also more versatile as it can be applied to a broad range of problems. In addition to Bussi and Bottaro, Francesco di Palma, a SISSA student, also took part in the study.

Federica Sgorbissa | EurekAlert!

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>