Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The genes tell crows to choose partners that look alike

20.06.2014

Crows like to select mates that look alike. In a large-scale genomic study, published in Science today, a team of researchers led by Uppsala University found that this behaviour might be rooted in their genetic make-up, revealing a likely common evolutionary path that allows for separating populations into novel species.

What is the driving engine behind biodiversity? One and a half centuries years ago, Charles Darwin recognized that species are subject to evolutionary change. Now, we know that all aspects defining an organism are encoded in its genome. Yet, how new species emerge from slight genetic changes remains unanswered. Crows, for example, are all black or grey coated, and they exhibit a strong tendency to select partners that look alike.

All-black Carrion Crow Nestlings

All-black carrion crow nestlings from a German population west of the hybrid zone. When crossing the zone, plumage colouration changes rapidly to the grey-coated hooded type.

Credit: Jochen Wolf

The researchers identified an avian system - crows and ravens of the genus Corvus - that they used as an evolutionary model to decipher the genetic underpinnings of speciation. Central to this system is the independent recurrence of a pied colour-pattern in several species of the genus that stands in contrasts to the predominant all-black plumage in the clade.

In this study the researchers focused on the young end of the evolutionary spectrum investigating the genetic architecture of divergence between all black carrion crows (Corvus [corone] corone) and grey coated hooded crows (C. [c.] cornix) that still hybridize along a hybrid zone stretching across Europe and Asia.

Hybrid zones are natural evolutionary experiments where early processes of speciation can be studied. Where black and grey morphs come into contact, they form a well-known hybrid zone that is astonishingly narrow (15-150 km) and apart from minor shifts has been stably maintained over at least 100 years.

Previous small scale genetic analysis showed hardly any genetic differentiation between carrion and hooded crow across the entire species range that would exceed the level of differentiation between populations of the same taxon, leave alone justify species status.

In this study the researchers set out to find the decisive differences that stabilize the hybrid zone and eventually keep carrion and hooded crows apart using a plethora of approaches: they generated a genome backbone, performed population genetic analyses of whole genome data of many individuals, raised young crows to measure gene expression under controlled conditions and conducted functional histological characterization of growing feather follicles to have a closer look at melanocytes, the cells where color is made.

Consistent with the hypothesis of color-mediated isolation, we found that gene expression differed almost exclusively in growing feather follicles at the stage where color is deposited into the feathers. Genes involved in coloration were constitutively expressed higher in black crow than in their grey counterparts.

Screens of the more than 1 billion base pairs in the genome revealed very little difference between the two. Only 82 base pairs were diagnosticly different and 81 of them were concentrated in one genomic region coding for genes involved in coloration and visual perception.

- This finding suggests the exciting possibility that a mate-choice relevant trait, like coloration, might be genetically coupled to its perception which could be common one evolutionary path allowing for separating populations into novel species. Such a mechanism could be common for many other species with visually oriented mate choice, says Jochen Wolf, one of the lead authors of the study.

###

For more information, please contact

Jochen Wolf, tel: +46 18-471 4120, e-mail: Jochen.Wolf@ebc.uu.se

"The genomic landscape underlying phenotypic integrity in the face of gene flow in crows" is scheduled for publication in the journal Science on 20 June 2014.

Jochen Wolf | Eurek Alert!

Further reports about: coloration crows follicles genes genomic genus populations species

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>