Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The first insects were not yet able to smell well


Odorant receptors of recent insects evolved long after insects migrated from water to land.

An insect’s sense of smell is vital to its survival. Only if it can trace even tiny amounts of odor molecules is it is able to find food sources, communicate with conspecifics, or avoid enemies.

Jumping bristletail Lepismachilis y-signata

Alexander Schneeberg

Firebrat Thermobia domestica

Sascha Bucks / Max Planck Institute for Chemical Ecology

According to scientists at the Max Planck Institute for Chemical Ecology, many proteins involved in the highly sensitive odor perception of insects emerged rather late in the evolutionary process.

The very complex olfactory system of modern insects is therefore not an adaptation to a terrestrial environment when ancient insects migrated from water to land, but rather an adaptation that appeared when insects developed the ability to fly. The results were published in the Open Access Journal eLife (eLife, March 26, 2014, doi: 10.7554/elife.02115)

Many insect species employ three families of receptor proteins in order to perceive thousands of different environmental odors. Among them are the olfactory receptors. They form a functional complex with another protein, the so-called olfactory receptor co-receptor, which enables insects to smell the tiniest amounts of odor molecules in their environment very rapidly.

Crustaceans and insects share a common ancestor. Since crustaceans do not have olfactory receptors, previously scientists assumed that these receptors evolved as an adaptation of prehistoric insects to a terrestrial life. This hypothesis is also based on the assumption that for the ancestors of recent insects, the ability to detect odor molecules in the air rather than dissolved in water was of vital importance.

Early research on insect olfactory receptors focused entirely on insects with wings. Ewald Große-Wilde and Bill S. Hansson and their colleagues from the Max Planck Institute for Chemical Ecology in Jena, Germany, have now taken a closer look at the olfactory system of wingless insects, which − in evolutionary terms − are older than winged insects: the jumping bristletail Lepismachilis y-signata and the firebrat Thermobia domestica, which are both wingless, as well as the leaf insect Phyllium siccifolium, which is winged and was used as a control. As all three studied insect species emerged at different times in insect evolution, the scientists wanted to track the historical development of olfactory receptors.

Christine Mißbach, first author of the study, analyzed the active genes in the insect antennae where the olfactory receptors are located and describes her discovery this way: “Astonishingly, the firebrat, which is more closely related to flying insects, employs several co-receptors, while the odorant receptors themselves are absent.”

However, the researchers did not find any evidence for an olfactory system which is based on odorant receptors in the most basal insect, the jumping bristletail.

“According to these findings, the receptor family which is important for olfaction in recent insects evolved long after the migration of insects from water to land,” Ewald Große-Wilde summarizes. The researchers are convinced that the main olfactory receptors evolved independently of the co-receptor long after insects had adapted to terrestrial life. They hope that further analyses will reveal why some insect species have only co-receptors, no main receptors, and also clarify the function these co-receptors have on their own. [AO]

Original Publication:
Missbach, C., Dweck, H., Vogel, H., Vilcinskas, A., Stensmyr, M. C., Hansson, B. S., Grosse-Wilde, E. (2014). Evolution of insect olfactory receptors. eLife, doi:10.7554/elife.02115.

Further Information:
Dr. Ewald Große-Wilde, Max Planck Institute for Chemical Ecology, E-Mail

Contact and Picture Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110,

Download of high-resolution images via

Weitere Informationen:

Angela Overmeyer | Max-Planck-Institut

Further reports about: Ecology Max-Planck-Institut insect insects odorant olfactory proteins receptor smell species terrestrial

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>