Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first insects were not yet able to smell well

27.03.2014

Odorant receptors of recent insects evolved long after insects migrated from water to land.

An insect’s sense of smell is vital to its survival. Only if it can trace even tiny amounts of odor molecules is it is able to find food sources, communicate with conspecifics, or avoid enemies.


Jumping bristletail Lepismachilis y-signata

Alexander Schneeberg


Firebrat Thermobia domestica

Sascha Bucks / Max Planck Institute for Chemical Ecology

According to scientists at the Max Planck Institute for Chemical Ecology, many proteins involved in the highly sensitive odor perception of insects emerged rather late in the evolutionary process.

The very complex olfactory system of modern insects is therefore not an adaptation to a terrestrial environment when ancient insects migrated from water to land, but rather an adaptation that appeared when insects developed the ability to fly. The results were published in the Open Access Journal eLife (eLife, March 26, 2014, doi: 10.7554/elife.02115)

Many insect species employ three families of receptor proteins in order to perceive thousands of different environmental odors. Among them are the olfactory receptors. They form a functional complex with another protein, the so-called olfactory receptor co-receptor, which enables insects to smell the tiniest amounts of odor molecules in their environment very rapidly.

Crustaceans and insects share a common ancestor. Since crustaceans do not have olfactory receptors, previously scientists assumed that these receptors evolved as an adaptation of prehistoric insects to a terrestrial life. This hypothesis is also based on the assumption that for the ancestors of recent insects, the ability to detect odor molecules in the air rather than dissolved in water was of vital importance.

Early research on insect olfactory receptors focused entirely on insects with wings. Ewald Große-Wilde and Bill S. Hansson and their colleagues from the Max Planck Institute for Chemical Ecology in Jena, Germany, have now taken a closer look at the olfactory system of wingless insects, which − in evolutionary terms − are older than winged insects: the jumping bristletail Lepismachilis y-signata and the firebrat Thermobia domestica, which are both wingless, as well as the leaf insect Phyllium siccifolium, which is winged and was used as a control. As all three studied insect species emerged at different times in insect evolution, the scientists wanted to track the historical development of olfactory receptors.

Christine Mißbach, first author of the study, analyzed the active genes in the insect antennae where the olfactory receptors are located and describes her discovery this way: “Astonishingly, the firebrat, which is more closely related to flying insects, employs several co-receptors, while the odorant receptors themselves are absent.”

However, the researchers did not find any evidence for an olfactory system which is based on odorant receptors in the most basal insect, the jumping bristletail.

“According to these findings, the receptor family which is important for olfaction in recent insects evolved long after the migration of insects from water to land,” Ewald Große-Wilde summarizes. The researchers are convinced that the main olfactory receptors evolved independently of the co-receptor long after insects had adapted to terrestrial life. They hope that further analyses will reveal why some insect species have only co-receptors, no main receptors, and also clarify the function these co-receptors have on their own. [AO]

Original Publication:
Missbach, C., Dweck, H., Vogel, H., Vilcinskas, A., Stensmyr, M. C., Hansson, B. S., Grosse-Wilde, E. (2014). Evolution of insect olfactory receptors. eLife, doi:10.7554/elife.02115.
http://elife.elifesciences.org/content/3/e02115

Further Information:
Dr. Ewald Große-Wilde, Max Planck Institute for Chemical Ecology, E-Mail grosse-wilde@ice.mpg.de

Contact and Picture Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, overmeyer@ice.mpg.de

Download of high-resolution images via http://www.ice.mpg.de/ext/735.html

Weitere Informationen:

http://www.ice.mpg.de/ext/1065.html?&L=0

Angela Overmeyer | Max-Planck-Institut

Further reports about: Ecology Max-Planck-Institut insect insects odorant olfactory proteins receptor smell species terrestrial

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>