Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The "Cyberwar" Against Cancer Gets a Boost from Intelligent Nanocarriers


TAU researcher advances novel strategy to fight cancer by shoring up the immune system

Two years ago, Prof. Eshel Ben-Jacob of Tel Aviv University's School of Physics and Astronomy and Rice University's Center for Theoretical Biological Physics made the startling discovery that cancer, like an enemy hacker in cyberspace, targets the body's communication network to inflict widespread damage on the entire system. Cancer, he found, possessed special traits for cooperative behavior and used intricate communication to distribute tasks, share resources, and make decisions.

In research published in the Early Edition of the Proceedings of the National Academy of Sciences, Prof. Ben-Jacob and researchers from Rice University and the University of Texas M.D. Anderson Cancer Center, the leading cancer treatment center in the U.S., offer new insight into the lethal interaction between cancer cells and the immune system's communications network. Prof. Ben-Jacob and the study co-authors developed a computer program that models a specific channel of cell-to-cell communication involving exosomes (nanocarriers with crucial cellular "intelligence") that both cancer and immune cells harness to communicate with other cells.

"Recent research has found that cancer is already adept at using a kind of 'cyberwarfare' against the immune system. We studied the interplay between cancer and the immune system to see how we might be able to shift the balance against cancer," said Prof. Ben-Jacob, noting a difference between the innate and the adaptive qualities of the immune system. "In the beginning, cancer is inhibited by the body's innate immunity. But once cancer escapes the immunity, there is a race between the progression of cancer and the ability of the adaptive immune system to recognize and act against it." 

Cyberwarfare of the body

"What we are dealing with is cyberwarfare, pure and simple. Cancer uses the immune systems' own communications network to attack not the soldiers but the generals that are coordinating the body's defense," said Prof. Ben-Jacob.

To better understand the role of exosome-mediated cell-to-cell communication in the battle between cancer and the immune system, the researchers created a computer model that captured the exosomal exchange between cancer cells, dendritic cells, and the other cells in the immune system.

The new model is based on earlier research, which showed that dendritic cells, mediators between the body's innate and adaptive immune systems (the former protects against all threats at all times and the latter guards more efficiently against specific, established dangers), employed exosomes to fulfil their task. The researchers discovered that, overtaken by cancer, these nanocarriers, which contain such vital components as signaling proteins, RNA snippets, and microRNAs, can command cells to change their tasks, placing the entire system at risk.

Finding a better balance between the strong and the weak

According to the new research, three possible cancer states can exist: strong, intermediary, and weak. The intermediary state — in which cancer is neither strong nor weak and in which the immune system is on high alert — could be the key to a new therapeutic approach with reduced side effects. Prof. Ben-Jacob believes it is possible to force cancer from a strong to moderate state, and then from a moderate to weak state, by alternating cycles of radiation or chemotherapy with immune-boosting treatments.

"Our first important discovery is that this situation is due to the exosome-based cyberwar between cancer and the immune system," said Prof. Ben-Jacob. "Without exosomes, the two possible states are only strong-weak and weak-strong. With exosomes, an intermediary state opens a new way to treat cancer using very a different approach."

Prof. Ben-Jacob likened the exchange to a tug-of-war between cancer and the immune system. "The challenge is to be familiar with the battlefield so that we can manipulate cancer therapies to change the balance in favor of the immune system. When cancer is detected, it is almost always in the context of a cancer-immunity competition," said Prof. Ben-Jacob. "We showed that the way to stop and reverse tumor progression without causing strong side effects is an individualized approach of mixed treatments — i.e., four days of radiation followed by a few days of immune system boosting, followed again by four days of radiation, and so on. If provided in the right order, the treatments could indeed shift the balance toward the immune system's 'victory' in reducing the cancer to the moderate-strong state."

The study was supported by the Cancer Prevention and Research Institute of Texas, the National Science Foundation, and the Tauber Family Funds.

George Hunka | Eurek Alert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>