Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The "Cyberwar" Against Cancer Gets a Boost from Intelligent Nanocarriers

08.10.2014

TAU researcher advances novel strategy to fight cancer by shoring up the immune system

Two years ago, Prof. Eshel Ben-Jacob of Tel Aviv University's School of Physics and Astronomy and Rice University's Center for Theoretical Biological Physics made the startling discovery that cancer, like an enemy hacker in cyberspace, targets the body's communication network to inflict widespread damage on the entire system. Cancer, he found, possessed special traits for cooperative behavior and used intricate communication to distribute tasks, share resources, and make decisions.

In research published in the Early Edition of the Proceedings of the National Academy of Sciences, Prof. Ben-Jacob and researchers from Rice University and the University of Texas M.D. Anderson Cancer Center, the leading cancer treatment center in the U.S., offer new insight into the lethal interaction between cancer cells and the immune system's communications network. Prof. Ben-Jacob and the study co-authors developed a computer program that models a specific channel of cell-to-cell communication involving exosomes (nanocarriers with crucial cellular "intelligence") that both cancer and immune cells harness to communicate with other cells.

"Recent research has found that cancer is already adept at using a kind of 'cyberwarfare' against the immune system. We studied the interplay between cancer and the immune system to see how we might be able to shift the balance against cancer," said Prof. Ben-Jacob, noting a difference between the innate and the adaptive qualities of the immune system. "In the beginning, cancer is inhibited by the body's innate immunity. But once cancer escapes the immunity, there is a race between the progression of cancer and the ability of the adaptive immune system to recognize and act against it." 

Cyberwarfare of the body

"What we are dealing with is cyberwarfare, pure and simple. Cancer uses the immune systems' own communications network to attack not the soldiers but the generals that are coordinating the body's defense," said Prof. Ben-Jacob.

To better understand the role of exosome-mediated cell-to-cell communication in the battle between cancer and the immune system, the researchers created a computer model that captured the exosomal exchange between cancer cells, dendritic cells, and the other cells in the immune system.

The new model is based on earlier research, which showed that dendritic cells, mediators between the body's innate and adaptive immune systems (the former protects against all threats at all times and the latter guards more efficiently against specific, established dangers), employed exosomes to fulfil their task. The researchers discovered that, overtaken by cancer, these nanocarriers, which contain such vital components as signaling proteins, RNA snippets, and microRNAs, can command cells to change their tasks, placing the entire system at risk.

Finding a better balance between the strong and the weak

According to the new research, three possible cancer states can exist: strong, intermediary, and weak. The intermediary state — in which cancer is neither strong nor weak and in which the immune system is on high alert — could be the key to a new therapeutic approach with reduced side effects. Prof. Ben-Jacob believes it is possible to force cancer from a strong to moderate state, and then from a moderate to weak state, by alternating cycles of radiation or chemotherapy with immune-boosting treatments.

"Our first important discovery is that this situation is due to the exosome-based cyberwar between cancer and the immune system," said Prof. Ben-Jacob. "Without exosomes, the two possible states are only strong-weak and weak-strong. With exosomes, an intermediary state opens a new way to treat cancer using very a different approach."

Prof. Ben-Jacob likened the exchange to a tug-of-war between cancer and the immune system. "The challenge is to be familiar with the battlefield so that we can manipulate cancer therapies to change the balance in favor of the immune system. When cancer is detected, it is almost always in the context of a cancer-immunity competition," said Prof. Ben-Jacob. "We showed that the way to stop and reverse tumor progression without causing strong side effects is an individualized approach of mixed treatments — i.e., four days of radiation followed by a few days of immune system boosting, followed again by four days of radiation, and so on. If provided in the right order, the treatments could indeed shift the balance toward the immune system's 'victory' in reducing the cancer to the moderate-strong state."

The study was supported by the Cancer Prevention and Research Institute of Texas, the National Science Foundation, and the Tauber Family Funds.

George Hunka | Eurek Alert!
Further information:
http://www.aftau.org/weblog-medicine--health?=&storyid4704=2114&ncs4704=3

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>