Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Combined Nanoscopy Technique

18.08.2014

Göttingen Scientists develop a combined technique for studying cellular structures via high-resolution imaging. Published in Nature Communications.

Original publication:
Saka SK, Vogts A, Kröhnert K, Hillion F, Rizzoli SO*, Wessels J* (2014). Correlated optical and isotopic nanoscopy. NAT COMMUN, 5: 3664.

Molecular processes in living cells can best be monitored by high-resolution microscopy techniques. Although groundbreaking technical innovations in the field of microscopy have been made in the past, frontiers still exist.


From left to right: Dr. Johannes Wessels, Dr. Sinem K. Saka, Katharina Kröhnert, Prof. Dr. Silvio O. Rizzoli. Prof. Rizzoli / CNMPB

Prof. Dr. Silvio O. Rizzoli and his team of the Göttingen DFG Research Center and Cluster of Excellence for Nanoscale Microscopy and Molecular Physiology of the Brains (CNMPB) have now developed a new application by combining two imaging techniques to expand the benefits of high-resolution to study biological questions.

The new imaging technique COIN enables to study the turnover and metabolism of subcellular structures, such as organelles, in detail. The new method has been described in Nature Communications.

The turnover of subcellular organelles is one of the least understood aspects of modern cell biology, despite its widely recognized importance. In biology, these processes are studied by “feeding” cells with marker molecules such as amino acids labeled with stable isotopes.

Over time these amino acids are metabolically incorporated into cellular proteins and the isotopic composition can then be imaged by secondary ion mass spectrometry (SIMS). This technique enables visualization of different organelles in cells and tissues. However, SIMS by itself cannot identify specific subcellular structures.

Therefore, the team of Prof. Rizzoli in collaboration with scientists of the Leibniz Institute for Baltic Sea Research in Warnemünde and the French company Cameca successfully correlated SIMS with a second technique.

The combined method termed “correlated optical and isotopic nanoscopy (COIN)” is based on super-resolution stimulated emission depletion (STED) microscopy. COIN allows precise studies of the protein turnover in different single organelles from cultured hippocampal neurons. The new approach has been recently published in Nature Communications.

Each of the combined techniques alone provides a piece of information that is unavailable for the other: “SIMS yields the isotopic composition of the material investigated and even its turnover, while STED microscopy reveals the identities and the spatial distribution of organelles or organelle components.”, Prof. Rizzoli explains. The combination (COIN) for the first time allows precisely determining the turnover of proteins in various single organelles in cells.

A special feature of the technique is the wide-range application to a variety of biological samples, which should therefore enable the investigation of the composition of many organelles and sub-cellular structures. Using COIN the scientists successfully yielded information about the protein turnover in different organelles of cultured hippocampal neurons. COIN can be applied to a variety of biological samples, and should therefore enable the investigation of the isotopic composition of many organelles and subcellular structures.

Prof. Dr. Silvio O. Rizzoli is head of the Department of Neuro- and Sensory Physiology at the University Medical Center Göttingen and member of the Göttingen Cluster of Excellence and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB).

His research focus includes the identification of molecular signal transduction processes between nerve cells. Prof. Rizzoli applies super-resolution microscopy techniques to study the transport and function of intracellular vesicles in the synapses of nerve cells. Very recently, Prof. Rizzoli received for the second time a prestigious funding award of the European Union for his excellent research proposal.

INFORMATION
CNMPB: http://www.cnmpb.de
Prof. Dr. Silvio O. Rizzoli
University Medical Center Göttingen Department Neuro- & Sensory Physiology c/o European Neuroscience Institute (ENI) Grisebachstraße 5, 37077 Göttingen Telefon 0551 / 39-33630, srizzol@gwdg.de

CNMPB – Center for Nanoscale Microscopy and Molecular Physiology of the Brain Cluster of Excellence 171 – DFG Research Center 103
Dr. Heike Conrad
Scientific Coordination, Press & Public Relations
Humboldtallee 23, 37073 Göttingen
Telefon 0551 / 39-7065, heike.conrad@med.uni-goettingen.de

Leibniz-Institut für Ostseeforschung Warnemünde
Sektion Biologische Meereskunde
Dr. Angela Vogts, Telefon 0381 / 5197 353, angela.vogts@io-warnemuende.de

Weitere Informationen:

http://rizzoli-lab.de - Department Prof. S. O. Rizzoli
http://www.cnmpb.de - Cluster of Excellence and DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)
http://www.io-warnemuende.de/en_index.html - Leibniz Institute for Baltic Sea Research Warnemünde

Dr. Heike Conrad | idw - Informationsdienst Wissenschaft

Further reports about: Brain CNMPB COIN DFG Microscopy Molecular SIMS composition organelles processes structures

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>