Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Cichlids’ Egg-Spots: How Evolution Creates new Characteristics

09.10.2014

The evolution of new traits with novel functions has always posed a challenge to evolutionary biology. Studying the color markings of cichlid fish, Swiss scientists were now able to show what triggered these evolutionary innovations, namely: a mobile genetic element in the regulatory region of a color gene. Their results have been published in the latest issue of the renowned scientific journal Nature Communications.

Biological evolution is in general based on the progressive adaption of traits through natural or sexual selection. However, ever so often, complex traits with completely new functions arise such as insect wings, feathers or the placenta.


The anal fin of the haplochromine cichlid Astatotilapia burtoni bearing the characteristic egg-spots

Fig: Zoology, University of Basel


A female haplochromine cichlid while mouth-breeding

Fig: Anya Theis, Zoology, University of Basel

The evolution of such evolutionary innovations is often hard to explain relying solely on the model of progressive modification of already existing traits. Furthermore, it is largely unknown which genome modifications actually lead to evolutionary innovations.

A team of Basel researchers jointly lead by Prof. Walter Salzburger from the Department of Zoology and Prof. Markus Affolter from the Biozentrum at the University of Basel now clarified the genetic and developmental origins of an evolutionary innovation in African cichlids.

The males of over 1,500 species feature conspicuous color markings on their anal fins – so called egg-spots – that play a central role in the mating behavior of these mouth-breeding fish. Immediately upon spawning, the female gathers up her eggs into the mouth before fertilization.

The male then presents his egg-spots to which the female responds by snatching and bringing her mouth close to the male's genital opening – only now are the eggs being fertilized inside the female's mouth.

“Jumping genes”

The Basel biologists were able to show that the evolution of egg-spots is linked to the insertion of a mobile genetic element – a “jumping gene” – in the regulatory region of a newly identified pigmentation gene. These mobile elements are short DNA strings that are able to change their position within the genome and can influence the regulation of other genes

In the case of the cichlid's egg-spots, the presence of the “jumping gene” upstream of a pigmentation gene with the name fhl2b leads to an alteration in gene expression in pigmentation cells and therefore to the development of the characteristic egg-spot pattern on the male cichlids’ anal fin.

The scientists came to this conclusion after having induced the cichlids’ genome segment containing the mobile element into zebrafish embryos. In fact, they were able to locate the according expression in a specific group of pigmentation cells. “These results illustrate once more the importance of changes in gene expression in evolution”, comments Prof. Walter Salzburger the findings.

Original source
M. Emilia Santos, Ingo Braasch, Nicolas Boileau, Britta S. Meyer, Loic Sauteur, Astrid Böhne, Heinz-Georg Belting, Markus Affolter & Walter Salzburger
The evolution of cichlid fish egg-spots is linked with a cis-regulatory change
Nature Communications 5:5149 (10.1038/ncomms6149)

David Brawand et al.
The genomic substrate for adaptive radiation in African cichlid fish
Nature 513: 375-381.

Further information
Prof. Walter Salzburger, Department of Environmental Science, University of Basel, Zoology, phone: +41 (0)61 267 03 03, email: walter.salzburger@unibas.ch

Weitere Informationen:

http://www.unibas.ch/index.cfm?uuid=EFD2A894CFF39024457223916C8B6E46&type=se...

Olivia Poisson | Universität Basel

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>