Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Cichlids’ Egg-Spots: How Evolution Creates new Characteristics

09.10.2014

The evolution of new traits with novel functions has always posed a challenge to evolutionary biology. Studying the color markings of cichlid fish, Swiss scientists were now able to show what triggered these evolutionary innovations, namely: a mobile genetic element in the regulatory region of a color gene. Their results have been published in the latest issue of the renowned scientific journal Nature Communications.

Biological evolution is in general based on the progressive adaption of traits through natural or sexual selection. However, ever so often, complex traits with completely new functions arise such as insect wings, feathers or the placenta.


The anal fin of the haplochromine cichlid Astatotilapia burtoni bearing the characteristic egg-spots

Fig: Zoology, University of Basel


A female haplochromine cichlid while mouth-breeding

Fig: Anya Theis, Zoology, University of Basel

The evolution of such evolutionary innovations is often hard to explain relying solely on the model of progressive modification of already existing traits. Furthermore, it is largely unknown which genome modifications actually lead to evolutionary innovations.

A team of Basel researchers jointly lead by Prof. Walter Salzburger from the Department of Zoology and Prof. Markus Affolter from the Biozentrum at the University of Basel now clarified the genetic and developmental origins of an evolutionary innovation in African cichlids.

The males of over 1,500 species feature conspicuous color markings on their anal fins – so called egg-spots – that play a central role in the mating behavior of these mouth-breeding fish. Immediately upon spawning, the female gathers up her eggs into the mouth before fertilization.

The male then presents his egg-spots to which the female responds by snatching and bringing her mouth close to the male's genital opening – only now are the eggs being fertilized inside the female's mouth.

“Jumping genes”

The Basel biologists were able to show that the evolution of egg-spots is linked to the insertion of a mobile genetic element – a “jumping gene” – in the regulatory region of a newly identified pigmentation gene. These mobile elements are short DNA strings that are able to change their position within the genome and can influence the regulation of other genes

In the case of the cichlid's egg-spots, the presence of the “jumping gene” upstream of a pigmentation gene with the name fhl2b leads to an alteration in gene expression in pigmentation cells and therefore to the development of the characteristic egg-spot pattern on the male cichlids’ anal fin.

The scientists came to this conclusion after having induced the cichlids’ genome segment containing the mobile element into zebrafish embryos. In fact, they were able to locate the according expression in a specific group of pigmentation cells. “These results illustrate once more the importance of changes in gene expression in evolution”, comments Prof. Walter Salzburger the findings.

Original source
M. Emilia Santos, Ingo Braasch, Nicolas Boileau, Britta S. Meyer, Loic Sauteur, Astrid Böhne, Heinz-Georg Belting, Markus Affolter & Walter Salzburger
The evolution of cichlid fish egg-spots is linked with a cis-regulatory change
Nature Communications 5:5149 (10.1038/ncomms6149)

David Brawand et al.
The genomic substrate for adaptive radiation in African cichlid fish
Nature 513: 375-381.

Further information
Prof. Walter Salzburger, Department of Environmental Science, University of Basel, Zoology, phone: +41 (0)61 267 03 03, email: walter.salzburger@unibas.ch

Weitere Informationen:

http://www.unibas.ch/index.cfm?uuid=EFD2A894CFF39024457223916C8B6E46&type=se...

Olivia Poisson | Universität Basel

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>