Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Bizarre Mating Habits of Flatworms

01.07.2015

Failing to find a mating partner is a dent to the reproductive prospects of any animal, but in the flatworm species Macrostomum hystrix it might involve a real headache.

Zoologists from the Universities of Basel and Bielefeld have discovered the extraordinary lengths to which this animal is willing to go in order to reproduce – including apparently injecting sperm directly into their own heads. The academic journal Proceedings of the Royal Society B has published their findings.


MicrMacrostomum hystrix showing the anterior eyes (1) in the head, followed by the paired testes (2), paired ovaries (3), developing eggs (4), the female genitalia containing three ma

(Image: Lukas Schärer)

The absence of a mate usually spells disaster for sexually reproducing animals. However, some simultaneous hermaphrodites – animals who have both male and female sex organs at the same time – have developed an escape route for this scenario: self-fertilization. It is an imperfect solution, as any offspring produced by so-called “selfing” are bound to be inbred, but still better than not reproducing at all.

In previous studies, it had been established that the flatworm species Macrostomum hystrix is capable of switching to just such selfing behavior when isolated from mating partners, a behavior found in many but not all simultaneous hermaphrodites. In their new study, Dr. Lukas Schärer from the University of Basel and his team now show the bizarre, yet remarkable mechanisms Macrostomum hystrix has developed that make this possible.

A shot to the head

The studied flatworms are highly transparent and their insides can therefore be easily observed under the microscope. By doing so, the zoologists discovered that under selfing conditions, when hermaphroditic individuals had to use their own sperm to fertilize their own eggs, the worms had very few sperm in their tail region.

This is in stark contrast to worms kept in a group, which contained most sperm in their tails, close to where fertilization actually occurs. Instead, isolated worms had more sperm in their head region.

This implies a rather strange insemination route: by using its needle-like male copulatory organ, an isolated worm can self-inject sperm into its own anterior body, from where the sperm then moves through the body towards the eggs.

“As far as we know, this is the first described example of hypodermic self-injection of sperm into the head. To us this sounds traumatic, but to these flatworms it may be their best bet if they cannot find a mate but still want to reproduce” explains Dr. Steven Ramm, first-author of the study.

Such a convoluted route is likely needed because, although hermaphrodites, there are no internal connections between the worm’s male and female reproductive systems.

Original source

Ramm SA, Schlatter A, Poirier M, Schärer L (2015)
Hypodermic Self-Insemination as a Reproductive Assurance Strategy
Proceedings of the Royal Society B | doi:10.1098/rspb.2015.0660

Further information

Lukas Schärer, University of Basel, Zoological Institute, Tel. +41 61 267 03 66, email: lukas.scharer@unibas.ch

Steven A. Ramm, Evolutionary Biology, Bielefeld University, Tel. +49 521 106 2719, email: steven.ramm@uni-bielefeld.de

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/The-Bizarre-Mating-Habits...

Olivia Poisson | Universität Basel

Further reports about: Biology Evolutionary Macrostomum animals eggs flatworm mechanisms offspring species

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>