Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Bizarre Mating Habits of Flatworms

01.07.2015

Failing to find a mating partner is a dent to the reproductive prospects of any animal, but in the flatworm species Macrostomum hystrix it might involve a real headache.

Zoologists from the Universities of Basel and Bielefeld have discovered the extraordinary lengths to which this animal is willing to go in order to reproduce – including apparently injecting sperm directly into their own heads. The academic journal Proceedings of the Royal Society B has published their findings.


MicrMacrostomum hystrix showing the anterior eyes (1) in the head, followed by the paired testes (2), paired ovaries (3), developing eggs (4), the female genitalia containing three ma

(Image: Lukas Schärer)

The absence of a mate usually spells disaster for sexually reproducing animals. However, some simultaneous hermaphrodites – animals who have both male and female sex organs at the same time – have developed an escape route for this scenario: self-fertilization. It is an imperfect solution, as any offspring produced by so-called “selfing” are bound to be inbred, but still better than not reproducing at all.

In previous studies, it had been established that the flatworm species Macrostomum hystrix is capable of switching to just such selfing behavior when isolated from mating partners, a behavior found in many but not all simultaneous hermaphrodites. In their new study, Dr. Lukas Schärer from the University of Basel and his team now show the bizarre, yet remarkable mechanisms Macrostomum hystrix has developed that make this possible.

A shot to the head

The studied flatworms are highly transparent and their insides can therefore be easily observed under the microscope. By doing so, the zoologists discovered that under selfing conditions, when hermaphroditic individuals had to use their own sperm to fertilize their own eggs, the worms had very few sperm in their tail region.

This is in stark contrast to worms kept in a group, which contained most sperm in their tails, close to where fertilization actually occurs. Instead, isolated worms had more sperm in their head region.

This implies a rather strange insemination route: by using its needle-like male copulatory organ, an isolated worm can self-inject sperm into its own anterior body, from where the sperm then moves through the body towards the eggs.

“As far as we know, this is the first described example of hypodermic self-injection of sperm into the head. To us this sounds traumatic, but to these flatworms it may be their best bet if they cannot find a mate but still want to reproduce” explains Dr. Steven Ramm, first-author of the study.

Such a convoluted route is likely needed because, although hermaphrodites, there are no internal connections between the worm’s male and female reproductive systems.

Original source

Ramm SA, Schlatter A, Poirier M, Schärer L (2015)
Hypodermic Self-Insemination as a Reproductive Assurance Strategy
Proceedings of the Royal Society B | doi:10.1098/rspb.2015.0660

Further information

Lukas Schärer, University of Basel, Zoological Institute, Tel. +41 61 267 03 66, email: lukas.scharer@unibas.ch

Steven A. Ramm, Evolutionary Biology, Bielefeld University, Tel. +49 521 106 2719, email: steven.ramm@uni-bielefeld.de

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/The-Bizarre-Mating-Habits...

Olivia Poisson | Universität Basel

Further reports about: Biology Evolutionary Macrostomum animals eggs flatworm mechanisms offspring species

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>