Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen-VARI-SHC research helps predict success with cancer drugs

15.06.2010
MicroRNA study provides biomarker for survival in small cell lung cancer

Researchers at the Translational Genomics Research Institute (TGen), the Van Andel Research Institute (VARI) and the Virginia G. Piper Cancer Center at Scottsdale Healthcare have discovered a biomarker that could help in the treatment of patients with an aggressive type of lung cancer.

Using a particular biomarker, researchers might better predict which patients with small cell lung cancer are resistant to existing drug therapies, and which ones could benefit from new therapies tailored to their specific needs, according to a scientific paper published today in the Journal of Thoracic Oncology.

"There is a need for predictive biomarkers that can aid investigators in designing future clinical trials, to help identify treatments that might be effective for these patients who most likely will be resistance to existing drug therapies, " said Dr. Glen J. Weiss, the paper's senior author and Director of Thoracic Oncology at TGen Clinical Research Services at Scottsdale Healthcare. TCRS is a partnership between TGen and Scottsdale Healthcare that helps bring new therapies quickly to patients at the Virginia G. Piper Cancer Center in Scottsdale.

Nearly 220,000 Americans are diagnosed each year with lung cancer, which is by far the leading cause of cancer death in the U.S., annually killing nearly 160,000 patients.

Of all lung cancer patients, an estimated 33,000 are diagnosed with SCLC. This is a particularly aggressive disease that usually goes undetected until it is in an advanced stage and treatment options are limited. More than 95 percent of SCLC patients eventually die from the disease.

Researchers from TGen, VARI and the Virginia G. Piper Cancer Center at Scottsdale Healthcare focused on identifying microRNAs, which are single-stranded RNA molecules that regulate how genes and proteins control cellular development. Because microRNAs are so resilient, they are relatively easy to detect in tumor tissue and blood, which is often a limitation for other biomarkers.

"VARI provided bioinformatics support assembling all the different types of data into a cohesive data set for analysis to help identify the miRNA that play a role in the survival of the lung cancer patients," said Dr. David Cherba, a VARI Bioinformatics Scientist.

Researchers profiled 34 tumor samples from patients with a median age of 69. They analyzed each tumor's microRNAs, searching for those that might be associated with cancer survival.

They identified three microRNAs associated with SCLC. But one in particular, identified as miR-92-2*, was "significantly" linked to survival, the paper said.

This microRNA could be used in two significant ways:

As a predictive biomarker in the development of new treatments for those SCLC tumors that prove to be de novo chemoresistant — possessing properties that render them inherently resistant to existing drug therapies.

As prognostic biomarkers in the screening of SCLC patients and the design of clinical trials better tailored to their prognosis.

"Our results demonstrate that higher tumor miR-92a-2* levels are associated with chemoresistance and with decreased survival in SCLC patients," said the paper titled MicroRNA 92a-2*, a Biomarker Predictive for Chemoresistance and Prognostic for Survival in Small Cell Lung Cancer Patients.

This was one of the first scientific papers published since the completion of the TGen-VARI alliance and affiliation agreement, announced in February.

"The collaboration that occurred on this project highlights the synergies created by the VARI-TGen alliance," said Dr. Craig Webb, a VARI Senior Scientific Investigator.

Dr. Jeffrey Trent, President and Research Director for TGen and VARI, said the new discoveries could have profound implications for the future of medicine.

"This advanced technology is exciting because of how these microRNA biomarkers could lead to improvements for patients. Hopefully, this will translate to new treatments and improved survival," Dr. Trent said.

The next step in this research should be to attain further validation by analyzing additional independent samples, the paper concludes.

This study was funded by the American Cancer Society, a Sylvia Chase Pilot Grant and the IBIS Foundation of Arizona.

About the Virginia G. Piper Cancer Center at Scottsdale Healthcare

The Virginia G. Piper Cancer Center at Scottsdale Healthcare offers diagnosis, treatment, research, prevention and support in its facilities at the Scottsdale Healthcare Shea Medical Center, attracting patients from across Arizona and the U.S. Groundbreaking cancer research is conducted through its Scottsdale Healthcare Research Institute in collaboration with TGen and leading universities. Scottsdale Healthcare is the not-for-profit parent organization of the Scottsdale Healthcare Shea Medical Center, Scottsdale Healthcare Osborn Medical Center and Scottsdale Healthcare Thompson Peak Hospital, Virginia G. Piper Cancer Center, Scottsdale Healthcare Research Institute and Scottsdale Healthcare Foundation. For additional information, please visit www.shc.org.

Press Contact:
Keith Jones, Director of Public Relations
Virginia G. Piper Cancer Center at Scottsdale Healthcare
480-882-4412
kjones@shc.org
About VARI
Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. The Van Andel Research Institute (VARI), the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories, in laboratories in Singapore and Nanjing, and in collaborative partnerships that span the globe.
Press Contact:
Joe Gavan
Vice President, Communications & Development
616-234-5390
About TGen
The Translational Genomics Research Institute (TGen) is a Phoenix-based non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. For more information, visit: www.tgen.org.
Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

Steve Yozwiak | EurekAlert!
Further information:
http://www.tgen.org

More articles from Life Sciences:

nachricht Desert ants cannot be fooled
23.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water cooling for the Earth's crust

23.11.2017 | Earth Sciences

Nano-watch has steady hands

23.11.2017 | Physics and Astronomy

Batteries with better performance and improved safety

23.11.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>