Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen study identifies gene fusion as likely cause of rare type of thyroid cancer

20.03.2014

Genomic sequencing of 62-year-old patient leads to new treatment option

In a scientific first, the fusion of two genes, ALK and EML4, has been identified as the genetic driver in an aggressive type of thyroid cancer, according to a study by the Translational Genomics Research Institute (TGen).

These groundbreaking findings are based on genetic sequencing of tumor cells from a 62-year-old patient with an aggressive tall cell variant of papillary thyroid cancer, according to the study published Tuesday, March 18, in the World Journal of Surgery, the official journal of the International Society of Surgery.

The patient's thyroid cancer recurred after he had undergone multiple operations, external beam radiation and chemotherapy, and so the patient appeared to be a candidate for additional study.

Following one surgery in June 2011, a sample of the patient's tumor was obtained and studied by whole-genome sequencing, in which TGen spells out, in order, the more than 3 billion chemical base pairs that make up human DNA.

A comparison of the tumor DNA to the patient's normal DNA found 57 mutations in 55 genes of the cancer genome. The investigators also found a rearrangement between two genes.  This translocation and fusion of EML4-ALK was identified as the genetic driver of the patient's cancer.

"This is the first report of the whole genome sequencing of a papillary thyroid cancer, in which we identified an EML4-ALK translocation. This is important because we have a drug that can target this fusion and treat the patient," said Dr. Michael J. Demeure, Clinical Professor and Director of TGen's Rare Cancer Unit, and the study's the study's principal investigator and lead author. "This patient's tumor did not harbor more well-known gene mutations that are associated with most thyroid cancers. These findings suggest that this tumor has a distinct oncogenesis, or the genetic cause of cancer."

There are few therapeutic options for patients with radioiodine-resistant aggressive papillary thyroid cancer. The EML4-ALK fusion appears in about 5 percent of lung cancers, which are usually treated with a targeted drug known as crizotinib.

By identifying the EML4-ALK fusion in this study, TGen was able to recommend crizotinib for this study's 62-year-old patient, whose cancer then remained progression-free for more than 6 months.

"Whole-genome sequencing technologies offer the promise of allowing for precision targeted treatment for human diseases, including cancer," said Dr. John Carpten, TGen Deputy Director of Basic Science, and Director of TGen's Integrated Cancer Genomics Division, and the study's senior author. "Through a greater understanding of the molecular oncogenesis of a specific cancer, one would hope to devise more effective, individualized treatments."

Whole genome sequencing is particularly beneficial for patients with relatively rare tumors, since they generally have less access to new drug treatments often available through clinical trials, according to the study, Whole-genome sequencing of an aggressive BRAF wild-type papillary thyroid cancer identified EML4-ALK translocation as a therapeutic target.

Also contributing to this study were physicians from Arizona Oncology, and Scottsdale Pathology Consultants.

# # #

About TGen
Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. TGen is focused on helping patients with cancer, neurological disorders and diabetes, through cutting edge translational research (the process of rapidly moving research towards patient benefit).  TGen physicians and scientists work to unravel the genetic components of both common and rare complex diseases in adults and children. Working with collaborators in the scientific and medical communities literally worldwide, TGen makes a substantial contribution to help our patients through efficiency and effectiveness of the translational process. For more information, visit: www.tgen.org.

Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

Steve Yozwiak | EurekAlert!

Further reports about: Cancer DNA Genomics aggressive crizotinib diseases translocation

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>