Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen study identifies gene fusion as likely cause of rare type of thyroid cancer

20.03.2014

Genomic sequencing of 62-year-old patient leads to new treatment option

In a scientific first, the fusion of two genes, ALK and EML4, has been identified as the genetic driver in an aggressive type of thyroid cancer, according to a study by the Translational Genomics Research Institute (TGen).

These groundbreaking findings are based on genetic sequencing of tumor cells from a 62-year-old patient with an aggressive tall cell variant of papillary thyroid cancer, according to the study published Tuesday, March 18, in the World Journal of Surgery, the official journal of the International Society of Surgery.

The patient's thyroid cancer recurred after he had undergone multiple operations, external beam radiation and chemotherapy, and so the patient appeared to be a candidate for additional study.

Following one surgery in June 2011, a sample of the patient's tumor was obtained and studied by whole-genome sequencing, in which TGen spells out, in order, the more than 3 billion chemical base pairs that make up human DNA.

A comparison of the tumor DNA to the patient's normal DNA found 57 mutations in 55 genes of the cancer genome. The investigators also found a rearrangement between two genes.  This translocation and fusion of EML4-ALK was identified as the genetic driver of the patient's cancer.

"This is the first report of the whole genome sequencing of a papillary thyroid cancer, in which we identified an EML4-ALK translocation. This is important because we have a drug that can target this fusion and treat the patient," said Dr. Michael J. Demeure, Clinical Professor and Director of TGen's Rare Cancer Unit, and the study's the study's principal investigator and lead author. "This patient's tumor did not harbor more well-known gene mutations that are associated with most thyroid cancers. These findings suggest that this tumor has a distinct oncogenesis, or the genetic cause of cancer."

There are few therapeutic options for patients with radioiodine-resistant aggressive papillary thyroid cancer. The EML4-ALK fusion appears in about 5 percent of lung cancers, which are usually treated with a targeted drug known as crizotinib.

By identifying the EML4-ALK fusion in this study, TGen was able to recommend crizotinib for this study's 62-year-old patient, whose cancer then remained progression-free for more than 6 months.

"Whole-genome sequencing technologies offer the promise of allowing for precision targeted treatment for human diseases, including cancer," said Dr. John Carpten, TGen Deputy Director of Basic Science, and Director of TGen's Integrated Cancer Genomics Division, and the study's senior author. "Through a greater understanding of the molecular oncogenesis of a specific cancer, one would hope to devise more effective, individualized treatments."

Whole genome sequencing is particularly beneficial for patients with relatively rare tumors, since they generally have less access to new drug treatments often available through clinical trials, according to the study, Whole-genome sequencing of an aggressive BRAF wild-type papillary thyroid cancer identified EML4-ALK translocation as a therapeutic target.

Also contributing to this study were physicians from Arizona Oncology, and Scottsdale Pathology Consultants.

# # #

About TGen
Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. TGen is focused on helping patients with cancer, neurological disorders and diabetes, through cutting edge translational research (the process of rapidly moving research towards patient benefit).  TGen physicians and scientists work to unravel the genetic components of both common and rare complex diseases in adults and children. Working with collaborators in the scientific and medical communities literally worldwide, TGen makes a substantial contribution to help our patients through efficiency and effectiveness of the translational process. For more information, visit: www.tgen.org.

Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

Steve Yozwiak | EurekAlert!

Further reports about: Cancer DNA Genomics aggressive crizotinib diseases translocation

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>