Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen study identifies gene fusion as likely cause of rare type of thyroid cancer

20.03.2014

Genomic sequencing of 62-year-old patient leads to new treatment option

In a scientific first, the fusion of two genes, ALK and EML4, has been identified as the genetic driver in an aggressive type of thyroid cancer, according to a study by the Translational Genomics Research Institute (TGen).

These groundbreaking findings are based on genetic sequencing of tumor cells from a 62-year-old patient with an aggressive tall cell variant of papillary thyroid cancer, according to the study published Tuesday, March 18, in the World Journal of Surgery, the official journal of the International Society of Surgery.

The patient's thyroid cancer recurred after he had undergone multiple operations, external beam radiation and chemotherapy, and so the patient appeared to be a candidate for additional study.

Following one surgery in June 2011, a sample of the patient's tumor was obtained and studied by whole-genome sequencing, in which TGen spells out, in order, the more than 3 billion chemical base pairs that make up human DNA.

A comparison of the tumor DNA to the patient's normal DNA found 57 mutations in 55 genes of the cancer genome. The investigators also found a rearrangement between two genes.  This translocation and fusion of EML4-ALK was identified as the genetic driver of the patient's cancer.

"This is the first report of the whole genome sequencing of a papillary thyroid cancer, in which we identified an EML4-ALK translocation. This is important because we have a drug that can target this fusion and treat the patient," said Dr. Michael J. Demeure, Clinical Professor and Director of TGen's Rare Cancer Unit, and the study's the study's principal investigator and lead author. "This patient's tumor did not harbor more well-known gene mutations that are associated with most thyroid cancers. These findings suggest that this tumor has a distinct oncogenesis, or the genetic cause of cancer."

There are few therapeutic options for patients with radioiodine-resistant aggressive papillary thyroid cancer. The EML4-ALK fusion appears in about 5 percent of lung cancers, which are usually treated with a targeted drug known as crizotinib.

By identifying the EML4-ALK fusion in this study, TGen was able to recommend crizotinib for this study's 62-year-old patient, whose cancer then remained progression-free for more than 6 months.

"Whole-genome sequencing technologies offer the promise of allowing for precision targeted treatment for human diseases, including cancer," said Dr. John Carpten, TGen Deputy Director of Basic Science, and Director of TGen's Integrated Cancer Genomics Division, and the study's senior author. "Through a greater understanding of the molecular oncogenesis of a specific cancer, one would hope to devise more effective, individualized treatments."

Whole genome sequencing is particularly beneficial for patients with relatively rare tumors, since they generally have less access to new drug treatments often available through clinical trials, according to the study, Whole-genome sequencing of an aggressive BRAF wild-type papillary thyroid cancer identified EML4-ALK translocation as a therapeutic target.

Also contributing to this study were physicians from Arizona Oncology, and Scottsdale Pathology Consultants.

# # #

About TGen
Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. TGen is focused on helping patients with cancer, neurological disorders and diabetes, through cutting edge translational research (the process of rapidly moving research towards patient benefit).  TGen physicians and scientists work to unravel the genetic components of both common and rare complex diseases in adults and children. Working with collaborators in the scientific and medical communities literally worldwide, TGen makes a substantial contribution to help our patients through efficiency and effectiveness of the translational process. For more information, visit: www.tgen.org.

Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

Steve Yozwiak | EurekAlert!

Further reports about: Cancer DNA Genomics aggressive crizotinib diseases translocation

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>