Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen-led study discovers genetic cause of rare type of ovarian cancer

24.03.2014

Scientific breakthrough could lead to new cancer treatments; study inspired by memory of 22-year-old patient

The cause of a rare type of ovarian cancer that most often strikes girls and young women has been uncovered by an international research team led by the Translational Genomics Research Institute (TGen), according to a study published online today by the renowned scientific journal, Nature Genetics.

By applying its groundbreaking work in genomics, TGen led a study that included Mayo Clinic, Johns Hopkins University, St. Joseph's Hospital and Medical Center; Evergreen Hematology and Oncology, Children's Hospital of Alabama, the Autonomous University of Barcelona, British Columbia Cancer Agency, University of British Columbia, and the University Health Network-Toronto.

The findings revealed a "genetic superhighway" mutation in a gene found in the overwhelming majority of patients with small cell carcinoma of the ovary, hypercalcemic type, also known as SCCOHT.

... more about:
»Cancer »Foundation »Genomics »Health »TGen »diseases

This type of cancer usually is not diagnosed until it is in its advanced stages. It does not respond to standard chemotherapy, and 65 percent of patients die within 2 years. It has affected girls as young as 14 months, and women as old as 58 years — with a mean age of only 24 years old. In this study, the youngest patient was 9 years old.

"This is a thoroughly remarkable study. Many genetic anomalies can be like a one-lane road to cancer; difficult to negotiate. But these findings indicate a genetic superhighway that leads right to this highly aggressive disease," said Dr. Jeffrey Trent, President and Research Director of TGen, and the study's senior author. "The correlation between mutations in SMARCA4 and the development of SCCOHT is simply unmistakable."

Dr. Trent added that while the breakthrough is for a relatively rare cancer, discovering the origins of this type of ovarian cancer could have implications for more common diseases.

Much of the work in this study was inspired by the memory of Taryn Ritchey, a 22-year-old TGen patient who in 2007 lost her battle with ovarian cancer, the 5th leading cause of cancer death among American women.

"Taryn would be incredibly excited about this amazing new study, and she would be glad and thankful that other young women like her might now be helped because of TGen's ongoing research," said Taryn's mother Judy Jost of Cave Creek, Ariz. "My daughter never gave up, and neither has TGen."

The SMARCA4 gene — previously associated with lung, brain and pancreatic cancer — was the only recurrently mutated gene in the study's samples. The implications of this discovery, therefore, may be widespread.

"The findings in this study represent a landmark in the field. The work identifies SMARCA4 mutations as the culprit, and most future research on this disease will be based on this remarkable discovery," said Dr. Bert Vogelstein, Director of the Ludwig Center at Johns Hopkins University, Investigator at the Howard Hughes Medical Institute, and pioneer in the field of cancer genomics. He did not participate in the study but is familiar with its findings.

"The past decade of research has taught us that cancer is a vastly complex disease. Profound patient-to-patient variability has made treatment and diagnosis for many tumor types at times very difficult. In this case, however, we have found a single genetic event driving SCCOHT in nearly every patient," said Dr. William Hendricks, a TGen Staff Scientist and another author of the study.

"We have shown that loss of SMARCA4 protein expression is extremely specific to SCCOHT and can facilitate the diagnosis of SCCOHT," said Dr. Anthony N. Karnezis, a fellow at British Columbia Cancer Agency in Vancouver.

"We set out to uncover any small sliver of hope for women afflicted with this rare cancer. What we found instead are the nearly universal underpinnings of SCCOHT," said Pilar Ramos, a TGen Research Associate, and the study's lead author. "By definitively identifying the relationship between SMARCA4 and SCCOHT, we have high confidence that we have set the stage for clinical trials that could provide patients with immediate benefit."

In a scientific rarity, two other studies with similar results also were to be published today by Nature Genetics, producing immediate validation and reflecting a scientific consensus that usually takes months or even years to accomplish.

###

The TGen-led study was supported by grants from: the Marsha Rivkin Center for Ovarian Cancer Research, the Anne Rita Monahan Foundation, the Ovarian Cancer Alliance of Arizona, the Small Cell Ovarian Cancer Foundation, and philanthropic support to the TGen Foundation. Further support was provided by the Terry Fox Research Initiative's New Frontiers Program in Cancer, and the Canadian Institutes of Health Research.

For more information about TGen's research into SCCO, or to participate in a future study, go to: http://www.tgen.org/scco.

About TGen

Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting cutting-edge genomic research to accelerate breakthroughs in healthcare. TGen is focused on helping patients with cancer, neurological disorders and diabetes, through cutting edge translational research (the process of rapidly moving research towards patient benefit). TGen physicians and scientists work to unravel the genetic components of both common and rare complex diseases in adults and children. Working with collaborators in the scientific and medical communities literally worldwide, TGen makes a substantial contribution to help our patients through efficiency and effectiveness of the translational process. For more information, visit: http://www.tgen.org.

Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

Steve Yozwiak | EurekAlert!

Further reports about: Cancer Foundation Genomics Health TGen diseases

More articles from Life Sciences:

nachricht Desirable defects
30.04.2015 | International School of Advanced Studies (SISSA)

nachricht Rare Dune Plants Thrive on Disturbance
30.04.2015 | Washington University in St. Louis

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erosion, landslides and monsoon across the Himalaya

Scientists from Nepal, Switzerland and Germany was now able to show how erosion processes caused by the monsoon are mirrored in the sediment load of a river crossing the Himalaya.

In these days, it was again tragically demonstrated that the Himalayas are one of the most active geodynamic regions of the world. Landslides belong to the...

Im Focus: Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability...

Im Focus: High-tech textiles – more than just clothes

Today, textiles are used for more than just clothes or bags – they are high tech materials for high-tech applications. High-tech textiles must fulfill a number of functions and meet many requirements. That is why the Fraunhofer Institute for Silicate Research ISC dedicated some major developing work to this most intriguing research area. The result can now be seen at Techtextil trade show in Frankfurt from 4 to 7 May. On display will be novel textile-integrated sensors, a unique multifunctional coating system for textiles and fibers, and textile processing of glass, carbon, and ceramics fibers to fiber preforms.

Thin materials and new kinds of sensors now make it possible to integrate silicone elastomer sensors in textiles. They are suitable for applications in medical...

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Dust from the Sahara Desert cools the Iberian Peninsula

30.04.2015 | Earth Sciences

Desirable defects

30.04.2015 | Life Sciences

Germany's DanTysk Offshore Wind Power Plant Inaugurated

30.04.2015 | Press release

VideoLinks
B2B-VideoLinks
More VideoLinks >>>