Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen and Genomic Health Inc. discover genes affecting cancer drug

13.01.2011
Laboratory study indicates need for more clinical research of mechanisms that influence the activity of oxaliplatin

Genomic research could help doctors better target a drug widely used to treat colorectal cancer patients, according to a study by Genomic Health Inc. (Nasdaq: GHDX) and the Translational Genomics Research Institute (TGen).

The drug, oxaliplatin, is widely used in colon cancer. It is used in early disease, following surgery in those cancers that are likely to recur. It is also used in advanced disease to slow progression of the cancer where it has spread to other parts of the body.

However, a significant number of patients experience serious side effects, including prolonged damage to the nervous system, "creating an urgent need to identify genes that are responsible for drug sensitivity or resistance, which results in directing therapy to those most likely to benefit," according to the study published in Molecular Cancer Research.

Colorectal cancer is the third most common type of cancer in the U.S., annually diagnosed in more than 146,000 Americans. It also is the third highest cause of cancer death in the U.S., annually killing nearly 50,000 people, more than who die each year on the nation's roadways. This cancer affects men and women in nearly equal numbers.

Nerve damage, or neurotoxicity, associated with oxaliplatin is most commonly manifest as pain or a loss of sensation in the hands and feet and can severely affect a patient's quality of life and ability to work. These symptoms are experienced in some form by the majority of patients receiving this drug and, for some patients, can be permanent.

The TGen/Genomic Health researchers examined the role of individual cancer genes to influence the sensitivity or resistance of colon cancer cells grown in laboratory culture. An interfering RNA screen of 500 genes — with 2,000 unique siRNA sequences —identified 27 genes that, when silenced, altered the sensitivity of colon tumor cells to oxaliplatin, causing damage to the cancer cells' DNA and inhibiting the cancer cells' ability to reproduce and survive, the study said. This study has also showed that diverse gene networks also play a role in the ability of the drug to impact colon tumors.

"These 27 genes, whose loss of function significantly affect the effectiveness of oxaliplatin, may be promising therapeutic biomarkers for oxaliplatin," said Dr. Holly Yin, head of TGen's Cellular Genomics Collaborative Center in Scottsdale, and a co-author of the study.

Dr. Robert J. Pelham, a research scientist at Redwood City, Calif.-based Genomic Health and the study's senior author, said the findings indicate a need for additional clinical studies on tumor specimens in patients treated with oxaliplatin. "Such future clinical studies could eventually lead to potential clinical applications, where patients could benefit," Dr. Pelham said.

This laboratory study has been published online and is pending print publication in Molecular Cancer Research, one of six peer-reviewed scientific journals published by the Philadelphia-based American Association for Cancer Research. Founded in 1907, AACR is the world's oldest and largest scientific organization focused on high-quality, innovative cancer research.

About Genomic Health Inc.

Genomic Health, Inc. (NASDAQ: GHDX) is a molecular diagnostics company focused on the global development and commercialization of genomic-based clinical laboratory services that analyze the underlying biology of cancer allowing physicians and patients to make individualized treatment decisions. Its lead product, the Oncotype DX® breast cancer test, has been shown to predict the likelihood of chemotherapy benefit as well as recurrence in early-stage breast cancer. In addition to this widely adopted test, Genomic Health provides the Oncotype DX colon cancer test, the first multigene expression test developed for the assessment of risk of recurrence in patients with stage II disease. As of September 30, 2010, more than 10,000 physicians in over 55 countries had ordered more than 175,000 Oncotype DX tests. Genomic Health has a robust pipeline focused on developing tests to optimize the treatment of prostate and renal cell cancers, as well as additional stages of breast and colon cancers. The company is based in Redwood City, California with European headquarters in Geneva, Switzerland. For more information, please visit www.genomichealth.com.

Press Contact:
650-569-2215
media@genomichealth.com
About TGen
The Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. TGen is affiliated with the Van Andel Research Institute in Grand Rapids, Michigan. For more information, visit: www.tgen.org.
Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

Steve Yozwiak | EurekAlert!
Further information:
http://www.tgen.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>