Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TGen analysis identifies biomarkers for diabetic kidney failure

18.12.2009
Pooled DNA technique identifies variances that could indicate susceptibility to end-stage renal disease

Researchers using a DNA analysis tool developed by the Translational Genomics Research Institute (TGen) and UCLA have identified genetic markers that could help treat chronic kidney disease among diabetics.

Study results, published in the December edition of Diabetic Medicine, show it is possible to identify biomarkers associated with end-stage renal disease (ESRD) from the pooled DNA of more than 1,000 diabetics. Specifically, TGen researchers identified genes that could potentially contribute to ESRD among those with Type 1 Diabetes.

ESRD almost always follows chronic kidney failure and although treatable with dialysis or transplantation, mortality rates remain high. While diabetic kidney disease is one of the most common complications of diabetes, it is currently not possible to determine who is at risk for ESRD.

“Identification of specific DNA variants may enhance our understanding of genetic risk factors for renal disease and may provide diagnostic value in determining which patients are at greatest risk of developing ESRD,” said Dr. Johanna DiStefano, Director of TGen’s Diabetes, Cardiovascular & Metabolic Diseases Division and the paper’s senior author.

The need to rapidly identify individuals with a predisposition to ESRD and to discover new drugs to prevent and treat this devastating condition is becoming critical, as the average onset of this disease affects ever-younger populations. Although Type 1 diabetes is distinctly different from Type 2 diabetes, the development of kidney disease is similar in individuals with either form. Researchers expect the current findings to impact individuals with both forms of the disease.

Nearly 23 percent of Americans diagnosed with ESRD die within the first year. And the annual cost for the nearly 400,000 people who require blood dialysis or kidney transplants is more than $16 billion.

TGen researchers tested the pooled genomic DNA from more than 500 cases of those with ESRD and compared that to more than 500 patients who had Type I diabetes for at least 20 years with no sign of ESRD. Scientists performed a whole genome association scan to look for single nucleotide polymorphisms (SNPs), which are the individual letters of DNA that vary among individuals. They sought SNPs that indicate a susceptibility to ESRD.

Experiments identified at least eight locations along the nearly 3-billion-base human genome that are ripe for further investigation of their ties to ESRD, according to the paper, Genome-wide SNP genotyping study using pooled DNA to identify candidate markers mediating susceptibility to end-stage renal disease attributed to Type 1 diabetes.

The study found at least six markers that may be associated with Type 1 diabetes, a lifelong disease that occurs when the pancreas does not produce enough insulin to properly control blood-sugar levels. There currently is no way to prevent Type 1, which is caused by autoimmune, genetic or environmental factors.

The study found two markers that may be associated with Type 2 diabetes, the most common form of diabetes. Type 2 develops when the body fails to produce enough insulin, which helps turn glucose from the sugars and starches we eat into energy. The failure to process glucose starves cells of energy and over time can damage the eyes, nerves, heart or kidneys. Type 2 diabetes can be prevented or treated with proper diet and exercise.

Using a similar pooled DNA analysis, TGen researchers, working with collaborators at the University of California Los Angeles, last year developed a way to identify an individual’s DNA from among a mixture of DNA of hundreds or even thousands of individuals.

“This technique will increasingly be used in identifying the genetic origins of many Types of disease,’’ predicted Dr. David Craig, Associate Director of TGen’s Neurogenomics Division, who co-developed the technique and was lead author of the current study.

Diabetic nephropathy, or kidney disease, is the most common cause of ESRD. It occurs when chronic kidney failure has progressed to the point when either dialysis or kidney transplants are required to prevent blood poisoning.

Nearly 24 million Americans, about 8 percent, have diabetes, according to the American Diabetes Association, which lists the disease as the nation’s seventh leading cause of death.

About TGen
The Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. TGen is affiliated with the Van Andel Research Institute in Grand Rapids, Michigan. For more information, visit: www.tgen.org.
Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

Steve Yozwiak | EurekAlert!
Further information:
http://www.tgen.org/news/index.cfm?newsid=1734
http://www.tgen.org

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>