Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas Tech Receives Patent for Decontamination Wipe Creation Process

06.05.2009
Texas Tech' process to create nonwoven toxic chemical decontamination wipes recently receives a patent from the United States Patent and Trademark Office.

The process used to create nonwoven toxic chemical decontamination wipes, such as Texas Tech University’s Fibertect™, recently received a patent from the United States Patent and Trademark Office.

Receiving the patent means the university has secured the intellectual property protection for the decontamination wipe’s technology, said David Miller, vice chancellor of Texas Tech University System’s Office of Technology Commercialization.

“This is an important milestone in the commercial development of the product and will aid our partner, Hobbs Bonded Fiber, in its marketing and sales efforts,” Miller said. “This is one example among the many novel technologies developed from Texas Tech’s research initiatives.”

Currently, the Fibertect™ wipe is under production by Hobbs Bonded Fibers of Waco and was invented by Seshadri Ramkumar, an associate professor of Environmental Toxicology at The Institute of Environmental and Human Health (TIEHH).

“The process for which the patent has been issued focuses on a multilayered wipe with a unique fabric structure, which can wipe liquid and vapor toxins,” Ramkumar said. “Also, it lends itself to the use of cotton and other fibers, depending on the need. The wipe can be used on human skin and military equipment.”

He was issued patent No. 7,516,525, titled Process for Making Chemical Protective Wipes and Such Wipes.

“This technology has been used successfully to develop products such as our nonwoven decontamination wipe, Fibertect™,” said Ron Kendall, director of TIEHH. “The need for decontamination wipes, such as the kind we’ve created here at TIEHH, were a top priority for the Department of Defense. Years ago, we began the research, developed a product and met a top national security issue.”

In December, Lawrence Livermore National Laboratory performed an evaluation of several decontamination products including Fibertect™. Their results were published in the American Chemical Society’s peer-reviewed journal, Industrial & Engineering Chemistry Research.

The wipe that researchers tested features an activated carbon core sandwiched between an absorbent polyester layer on one side and absorbent cellulose on the other. After testing with mustard gas and other toxic chemicals, the results showed that the Texas Tech-created dry fabric out-performed 30 different decontamination products, including materials currently used in military decontamination kits.

The laboratory recommended Fibertect™ to be part of a prototype low-cost personal decontamination system.

Find Texas Tech news, experts and story ideas at www.media.ttu.edu.

CONTACT: David Miller, vice chancellor, Texas Tech University System’s Office of Technology Commercialization, (806) 742-4105, or david.l.miller@ttu.edu, Seshadri Ramkumar, associate professor at The Institute of Environmental and Human Health at Texas Tech University, (806) 445-1925, or s.ramkumar@ttu.edu; Ronald Kendall, director, The Institute of Environmental and Human Health, Texas Tech University, (806) 885-4567, ron.kendall@tiehh.ttu.edu.

John Davis | Newswise Science News
Further information:
http://www.ttu.edu
http://www.media.ttu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>