Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas Tech Receives Patent for Decontamination Wipe Creation Process

06.05.2009
Texas Tech' process to create nonwoven toxic chemical decontamination wipes recently receives a patent from the United States Patent and Trademark Office.

The process used to create nonwoven toxic chemical decontamination wipes, such as Texas Tech University’s Fibertect™, recently received a patent from the United States Patent and Trademark Office.

Receiving the patent means the university has secured the intellectual property protection for the decontamination wipe’s technology, said David Miller, vice chancellor of Texas Tech University System’s Office of Technology Commercialization.

“This is an important milestone in the commercial development of the product and will aid our partner, Hobbs Bonded Fiber, in its marketing and sales efforts,” Miller said. “This is one example among the many novel technologies developed from Texas Tech’s research initiatives.”

Currently, the Fibertect™ wipe is under production by Hobbs Bonded Fibers of Waco and was invented by Seshadri Ramkumar, an associate professor of Environmental Toxicology at The Institute of Environmental and Human Health (TIEHH).

“The process for which the patent has been issued focuses on a multilayered wipe with a unique fabric structure, which can wipe liquid and vapor toxins,” Ramkumar said. “Also, it lends itself to the use of cotton and other fibers, depending on the need. The wipe can be used on human skin and military equipment.”

He was issued patent No. 7,516,525, titled Process for Making Chemical Protective Wipes and Such Wipes.

“This technology has been used successfully to develop products such as our nonwoven decontamination wipe, Fibertect™,” said Ron Kendall, director of TIEHH. “The need for decontamination wipes, such as the kind we’ve created here at TIEHH, were a top priority for the Department of Defense. Years ago, we began the research, developed a product and met a top national security issue.”

In December, Lawrence Livermore National Laboratory performed an evaluation of several decontamination products including Fibertect™. Their results were published in the American Chemical Society’s peer-reviewed journal, Industrial & Engineering Chemistry Research.

The wipe that researchers tested features an activated carbon core sandwiched between an absorbent polyester layer on one side and absorbent cellulose on the other. After testing with mustard gas and other toxic chemicals, the results showed that the Texas Tech-created dry fabric out-performed 30 different decontamination products, including materials currently used in military decontamination kits.

The laboratory recommended Fibertect™ to be part of a prototype low-cost personal decontamination system.

Find Texas Tech news, experts and story ideas at www.media.ttu.edu.

CONTACT: David Miller, vice chancellor, Texas Tech University System’s Office of Technology Commercialization, (806) 742-4105, or david.l.miller@ttu.edu, Seshadri Ramkumar, associate professor at The Institute of Environmental and Human Health at Texas Tech University, (806) 445-1925, or s.ramkumar@ttu.edu; Ronald Kendall, director, The Institute of Environmental and Human Health, Texas Tech University, (806) 885-4567, ron.kendall@tiehh.ttu.edu.

John Davis | Newswise Science News
Further information:
http://www.ttu.edu
http://www.media.ttu.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>