Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas A&M Researchers Examine How Viruses Destroy Bacteria

20.11.2009
Viruses are well known for attacking humans and animals, but some viruses instead attack bacteria. Texas A&M University researchers are exploring how hungry viruses, armed with transformer-like weapons, attack bacteria, which may aid in the treatment of bacterial infections.

The Texas A&M researchers' work is published in the renowned journal Nature Structural & Molecular Biology.

The attackers are called phages, or bacteriophages, meaning eaters of bacteria.

The word bacteriophage is derived from the Greek "phagein," meaning eater of bacteria.

"The phages first attach to the bacteria and then inject their DNA," says Sun Qingan, coauthor of the article and a doctoral student at Texas A&M. "Then they reproduce inside the cell cytoplasm."

After more than 100 phage particles have been assembled, the next step is to be released from the bacterial host, so that the progeny virions can find other hosts and repeat the reproduction cycle, Sun adds.

Besides the cell membrane, the phages have another obstacle on their way out – a hard shell called cell wall that protects the bacteria. Only by destroying the cell wall can the phages release their offspring.

But, don't worry. The phages have a secret weapon – an enzyme that can destroy the wall from inside, thus called endolysin.

"One of the special examples, R21, remains inactive when it is first synthesized and attached to the membrane as demonstrated in our paper," Sun explains. "But when the enzyme leaves the membrane, it restructures just like a transformer and gains the power to destroy the cell wall."

The trigger controlling the transformation process is a segment of the enzyme call the SAR domain, according to the Texas A&M team.

"The SAR domain is like the commander – it tells the enzyme when to begin restructuring and destroying the cell wall," he says. "This finding enables us to better understand the release process and provides us with a possible target when we want to control the destruction of bacteria cell walls or prohibit this action in some infectious diseases."

Some research has been conducted to explore the possibility of using phages to kill bacteria and thus treating bacterial infections.

Sun and colleagues' finding unveils one secret of the phages and may be useful in phage therapy and other applications.

Contact: Sun Qingan at (979) 862-7639 or q-sun@neo.tamu.edu or Miao Jingang at miaojingang@tamu.edu.

About research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $582 million, which ranks third nationally for universities without a medical school, and underwrites approximately 3,500 sponsored projects. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Follow us on Twitter at http://www.twitter.com/tamutalk.

Sun Qingan | EurekAlert!
Further information:
http://www.tamu.edu
http://tamunews.tamu.edu

Further reports about: A&M SAR SAR domain Texas bacteria bacterial infection enzyme transformation process viruses

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>