Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas A&M Researchers Examine How Viruses Destroy Bacteria

20.11.2009
Viruses are well known for attacking humans and animals, but some viruses instead attack bacteria. Texas A&M University researchers are exploring how hungry viruses, armed with transformer-like weapons, attack bacteria, which may aid in the treatment of bacterial infections.

The Texas A&M researchers' work is published in the renowned journal Nature Structural & Molecular Biology.

The attackers are called phages, or bacteriophages, meaning eaters of bacteria.

The word bacteriophage is derived from the Greek "phagein," meaning eater of bacteria.

"The phages first attach to the bacteria and then inject their DNA," says Sun Qingan, coauthor of the article and a doctoral student at Texas A&M. "Then they reproduce inside the cell cytoplasm."

After more than 100 phage particles have been assembled, the next step is to be released from the bacterial host, so that the progeny virions can find other hosts and repeat the reproduction cycle, Sun adds.

Besides the cell membrane, the phages have another obstacle on their way out – a hard shell called cell wall that protects the bacteria. Only by destroying the cell wall can the phages release their offspring.

But, don't worry. The phages have a secret weapon – an enzyme that can destroy the wall from inside, thus called endolysin.

"One of the special examples, R21, remains inactive when it is first synthesized and attached to the membrane as demonstrated in our paper," Sun explains. "But when the enzyme leaves the membrane, it restructures just like a transformer and gains the power to destroy the cell wall."

The trigger controlling the transformation process is a segment of the enzyme call the SAR domain, according to the Texas A&M team.

"The SAR domain is like the commander – it tells the enzyme when to begin restructuring and destroying the cell wall," he says. "This finding enables us to better understand the release process and provides us with a possible target when we want to control the destruction of bacteria cell walls or prohibit this action in some infectious diseases."

Some research has been conducted to explore the possibility of using phages to kill bacteria and thus treating bacterial infections.

Sun and colleagues' finding unveils one secret of the phages and may be useful in phage therapy and other applications.

Contact: Sun Qingan at (979) 862-7639 or q-sun@neo.tamu.edu or Miao Jingang at miaojingang@tamu.edu.

About research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $582 million, which ranks third nationally for universities without a medical school, and underwrites approximately 3,500 sponsored projects. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Follow us on Twitter at http://www.twitter.com/tamutalk.

Sun Qingan | EurekAlert!
Further information:
http://www.tamu.edu
http://tamunews.tamu.edu

Further reports about: A&M SAR SAR domain Texas bacteria bacterial infection enzyme transformation process viruses

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>