Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas A&M Experts Make New Underwater Discoveries

15.06.2012
Ford had his auto, Winchester his rifle, Boeing loved his jets. Tom Iliffe will gladly settle for his cave crustaceans.

For a scientific researcher, discovering any type of new species is a big thrill, and an even bigger one if the new creature is named after you. Texas A&M University, one of a few select schools that carries the rare designation of being a land grant, sea grant and space grant institution, has several researchers who have identified new marine species and thus contributed greatly to advancing our knowledge of the biodiversity of ocean life.

Iliffe, a marine biology professor at Texas A&M-Galveston, is known internationally as one of the world’s foremost cave divers, and he is an expert on “blue holes,” caves so named because from an aerial view, they appear as a blue circle dotting the ocean. The Bahamas are ground zero for blue holes, and there are believed to be more than 1,000 of them in the area.

Iliffe has explored at least 1,500 underwater caves, more than anyone in the world, and he has done so from the Italian coast to Australia and just about everywhere in between. Along the way, he has discovered more than 300 new marine species and had numerous ones named after him.

Iliffe discovered his first cave species in 1979 in Bermuda caves. Although his initial interest in caves was purely recreational, his first glimpse of the crystal clear blue cave waters and the strange white, eyeless animals living in their depths was enough to prompt him to change his career path.

Cave diving is a critical component of Iliffe’s research as most of the caves that he studies contain a layer of fresh or brackish water at the surface with fully marine water occurring at depth. It is only in this deep saltwater — a lightless, food and oxygen-poor environment accessible only by diving — that Iliffe finds his unique life forms.

“When you explore a cave that probably no one has ever entered and you find a type of marine life that no one knew existed, it is quite an exciting time,” he explains.

Iliffe discovered many new species, such as a type of worm he found in a volcanic, lava tube cave in the Canary Islands off the coast of Africa. The research team members he led agreed they should name the eyeless and depigmented worm after Iliffe, so thus was identified Sphaerosyllis iliffei.

He also was instrumental in discovering a number of new species of Remipedia, initially thought to be among the most primitive of all types of crustaceans. Resembling a centipede, remipedes will never win any beauty contests: they have hollow-tip fangs that inject a venom potent enough to kill small shrimp or other marine life.

Remipedia are also hermaphrodites — they contain both male and female reproductive organs in the same individual. Recent investigations of remipede DNA have found that they are the closest living crustacean relatives of the hexapods — eight-legged animals including the insects.

There are half a dozen other species named for him including a type of shrimp, Typhlata iliffei, found in Bermuda caves, and don’t forget the Iliffeocia illifei, a type of crustacean that resembles a clam and is found in locations including the Galapagos Islands from the Pacific and Bermuda in the Atlantic.

“I’ve been lucky enough to discover many caves that no one has ever entered before,” Iliffe adds. “It’s like going to the far side of the moon. You turn a corner and you realize you are seeing things no one has ever seen, and these include strange, alien creatures. It never ceases to be an amazing experience.”

Mary Wicksten can relate to that feeling.

The Texas A&M biology professor specializes in decapods, crustaceans that range from tiny shrimp to large crabs that have a leg span of more than seven feet. Like Iliffe, her research has made her a world traveler, and to date, she has discovered about 28 new marine species.

Her first occurred in 1981 when she identified Alpheus inca, which is a large shrimp able to make loud snapping sounds with its pinchers, almost as loud as snapping your fingers. It can be found happily snapping in many tide pools along the coast of Peru.

Another of her many discoveries is Encantada spinoculata, which is the shallowest representative of a group of shrimp that are normally found at depths of 3,000 feet or more, but it instead lives in about 150 feet and can be found in the Galapagos.

The gem of her discoveries? “It might be one I found right here on the Texas A&M campus,” she says.

“There are many ditches in this area that contain a lot of water and most of them have crayfish in them. In 1998, I was examining one such ditch near the Wildlife Collections building and found a type that had me stumped. Come to find out, no one had ever identified it.”

The new species — Procambarus caeruleus — is also known as the Navasota crayfish because it can be found near the Navasota River and southern Brazos County.

One reason Wicksten learned why no one had ever identified it before is because it is a recluse of sorts — it likes to burrow underground and only emerges after heavy rains, when it likes to scamper to the playgrounds of those watery ditches.

As for her namesake, consider the Politolana wickstenae, a type of crustacean found in the deep waters of the Gulf of Mexico. “I have to admit it’s not very pretty — it has big jaws and it’s totally blind,” she notes. “But it’s still nice having something named for you. I am having as much fun doing this type of research as I ever have, so hopefully I have a few more discoveries left in me.”

Liz Borda, a post-doctoral researcher in marine biology at Texas A&M-Galveston, has described several new species of polychaetes, marine worms with many hairs, from deep-sea habitats such as hydrothermal vents and wood falls. Living a life in complete darkness and thousands of feet below the ocean’s surface, these worms indirectly depend on bacteria, the very bottom of the food chain, to convert harmful chemicals seeping from the ocean floor and decomposing matter into food for those higher up the food chain.

Some of her recent discoveries include Cryptonome conclava, a worm cryptically living within the galleys and tunnels of sunken wood created by shipworms, living at depths of more than 5,200 feet. Other new species are only found at deep hydrothermal vents, including Archinome levinae from the eastern Pacific Ocean, Archinome maratlantica from the Atlantic Ocean. Archinome jasoni from the Atlantic, Indian and western Pacific Oceans, can be found at more than 13,000 feet below sea level.

“Cryptonome was discovered very recently, within the past two years,” Borda notes.

“As for Archinome worms, we’ve known of their existence in the deep sea since they were discovered over 25 years ago as Archinome rosacea. Since worms from opposite sides of the globe look alike, they were all given the same name. By using genetic tools, I was able to uncover species that look very similar, but these were in fact different species new to science,” she says from her Galveston office.

“The novelty is that we are dealing with creatures that live in environments that are harsh and not easily accessible. What can they tell us about deep-sea environments and how they have evolved over millions of years? Is there an evolutionary connection among sites where they are found and what are their relationships to species found in other marine habitats?

“For me, finding out these answers is really the fun part.”

Media contact: Keith Randall, News & Information Services, at (979) 845-4644 or keith-randall@tamu.edu

Keith Randall | Newswise Science News
Further information:
http://www.tamu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>