Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Testing virucidal efficacy of disinfectant laundering processes

Testing laundering processes for anti-viral (virucide) efficacy has only been carried out under in vitro conditions in the laboratory until now.

At the moment, no laundering process on the market has been proven and certified as virucidal because methods for in situ testing under actual working conditions have been unavailable.

Even the lists of certified disinfectant laundering processes suited for killing or inactivating bacteria and fungal pathogens (A) and viruses (B) [lists maintained by the Robert Koch Institut (RKI), and the Disinfectant Commission of the Association for Applied Hygiene, (Verbund für Angewandte Hygiene e.V., (VAH)] are based on in-vitro tests. The Institute for Hygiene and Biotechnology (IHB) at Hohenstein has developed a virus bioindicator that will make possible in situ testing of laundering processes for virucidal efficacy [data published in Hygiene und Medizin, (June edition)]. This is a new approach to testing of disinfecting laundry processes on virucidal efficacy in practice.

The current statistics for cases of viral disease indicate the need for in situ testing is indisputable. Take, for example, gastro-intestinal viral infections - in particular, those caused by noroviruses (NoVs) - that are constantly increasing in number in Germany. Hardest hit by these infections are social and health care institutions, such as hospitals, homes for the elderly and nursing care homes. Human noroviruses are very resistant and efforts to grow NoV cultures under laboratory conditions have been unsuccessful so far.

As a result, investigations of disinfectant efficacy up to now have been based primarily on the results of tests using viruses that are structurally similar. A virus that affects bacteria, the bacteriophage MS2, has currently been accepted as a suitable surrogate for NoVs. Researchers at the Institute for Hygiene and Biotechnology have used MS2 in their development of a viral bioindicator.

As a general practice, small textile cotton swatches contaminated with bacteria, known as bioindicators, are used to test the bactericidal effect of processes or agents. Using a similar method, the scientists at Hohenstein applied MS2 bacteriophages (as a pathogen similar to norovirus) to small cotton swatches and laundered them as they would be cleaned in situ. A disinfectant listed as a virucide was used in a low temperature (40°C) laundering process during which thermal deactivation of the virus could not be expected as a matter of course. In order to simulate realistic processing conditions for laundry at homes for the elderly and care homes, the virus was introduced into organic, artificial faecal material that was used to simulate soiling for test purposes. Used in this form, the bacteriophages met the standard requirements for use as a test virus and could be applied successfully to evaluating the listed low-temperature laundering process. In addition, the Institute for Hygiene and Biotechnology carried out further, comprehensive, analyses of cultivability, proof of specificity, stability and ability to disinfect. These emphasise the practicality of using the MS2 bacteriophage to simulate NoVs.

The IHB's experiments demonstrate bacteriophages such as MS2 are suitable viral bioindicators for the purposes of testing and demonstrating the virucidal efficacy of laundering processes under conditions similar to those in the field. For more information on the viral bioindicators, please contact

Rose-Marie Riedl | idw
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>