Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Testing virucidal efficacy of disinfectant laundering processes

13.05.2009
Testing laundering processes for anti-viral (virucide) efficacy has only been carried out under in vitro conditions in the laboratory until now.

At the moment, no laundering process on the market has been proven and certified as virucidal because methods for in situ testing under actual working conditions have been unavailable.

Even the lists of certified disinfectant laundering processes suited for killing or inactivating bacteria and fungal pathogens (A) and viruses (B) [lists maintained by the Robert Koch Institut (RKI), and the Disinfectant Commission of the Association for Applied Hygiene, (Verbund für Angewandte Hygiene e.V., (VAH)] are based on in-vitro tests. The Institute for Hygiene and Biotechnology (IHB) at Hohenstein has developed a virus bioindicator that will make possible in situ testing of laundering processes for virucidal efficacy [data published in Hygiene und Medizin, (June edition)]. This is a new approach to testing of disinfecting laundry processes on virucidal efficacy in practice.

The current statistics for cases of viral disease indicate the need for in situ testing is indisputable. Take, for example, gastro-intestinal viral infections - in particular, those caused by noroviruses (NoVs) - that are constantly increasing in number in Germany. Hardest hit by these infections are social and health care institutions, such as hospitals, homes for the elderly and nursing care homes. Human noroviruses are very resistant and efforts to grow NoV cultures under laboratory conditions have been unsuccessful so far.

As a result, investigations of disinfectant efficacy up to now have been based primarily on the results of tests using viruses that are structurally similar. A virus that affects bacteria, the bacteriophage MS2, has currently been accepted as a suitable surrogate for NoVs. Researchers at the Institute for Hygiene and Biotechnology have used MS2 in their development of a viral bioindicator.

As a general practice, small textile cotton swatches contaminated with bacteria, known as bioindicators, are used to test the bactericidal effect of processes or agents. Using a similar method, the scientists at Hohenstein applied MS2 bacteriophages (as a pathogen similar to norovirus) to small cotton swatches and laundered them as they would be cleaned in situ. A disinfectant listed as a virucide was used in a low temperature (40°C) laundering process during which thermal deactivation of the virus could not be expected as a matter of course. In order to simulate realistic processing conditions for laundry at homes for the elderly and care homes, the virus was introduced into organic, artificial faecal material that was used to simulate soiling for test purposes. Used in this form, the bacteriophages met the standard requirements for use as a test virus and could be applied successfully to evaluating the listed low-temperature laundering process. In addition, the Institute for Hygiene and Biotechnology carried out further, comprehensive, analyses of cultivability, proof of specificity, stability and ability to disinfect. These emphasise the practicality of using the MS2 bacteriophage to simulate NoVs.

The IHB's experiments demonstrate bacteriophages such as MS2 are suitable viral bioindicators for the purposes of testing and demonstrating the virucidal efficacy of laundering processes under conditions similar to those in the field. For more information on the viral bioindicators, please contact ihb@hohenstein.de.

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de/en/content/content1.asp?hohenstein=47-0-0-643-2009

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>