Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


For testing skin cream, synthetic skin may be as good as the real thing

New research suggests that currently available types of synthetic skin may now be good enough to imitate animal skin in laboratory tests, and may be on their way to truly simulating human skin in the future.

Researchers compared the response of synthetic skins to rat skin when they were both exposed to a generic skin cream treatment, and the results indicated they both reacted similarly.

The scientists used high-resolution images of two types of synthetic skin and samples of rat skin to discover similarities on microscopic scales.

The findings have implications for the treatment of burn victims.

When a person’s body is severely burned, he or she may not have enough healthy skin remaining to attempt healing the burns through skin cell regeneration with his or her own skin. In this case, synthetic skin or animal skin provides a potential substitute. But the use of animal skin comes with a variety of problems.

“In addition to ethical issues, animal skin is hard to obtain, expensive, and gives highly variable results because of individual skin variability,” said Bharat Bhushan, Ohio Eminent Scholar and the Howard D. Winbigler Professor of mechanical engineering at Ohio State University.

“Animal skin will vary from animal to animal, which makes it hard to anticipate how it might affect burnt victims, individually,” Bhushan said. “But, synthetic skin’s composition is consistent, making it a more reliable product,” he continued.

Bhushan’s research will appear in the June 5 issue of the Journal of Applied Polymer Science.

Bhushan and his colleague Wei Tang, an engineer at China University of Mining and Technology, compared two different types of synthetic skin to rat skin. The first synthetic skin was a commercially available skin purchased from Smooth-On, Inc. of Easton, Pennsylvania. The second synthetic skin was produced in Bhushan’s lab. Ohio State’s University Lab Animal Resources provided the rat skin samples.

Whether a synthetic skin feels and acts like real skin is very important, Bhushan explained. The skin must stand up to environmental effects such as sunlight or rain, while maintaining its texture and consistency. Scientists have continued to improve the practical and aesthetic properties of synthetic skin, which suggests it may soon be ready to replace animal skin and, farther in the future, human skin.

“Right now, our main concern is to determine whether the synthetic skin behaves like any real skin. Then, scientists can go on to more complex problems like modeling synthetic products that behave exactly like human skin,” Bhushan said.

Bhushan is an expert at measuring effects on tiny scales, such as a nanometer, or billionth of a meter, which is important in skin research.

“Cellular events, like the effective and accurate delivery of drugs and the absorption of skincare products – these things occur at the nanoscale,” explained Bhushan.

Using a highly sensitive microscope, known as an atomic force microscope, Bhushan and Tang were able to view the skin and the affects of an applied skin cream on a scale of about 100 nanometers. The average width of a human hair is approximately 1,000 times larger.

Despite the difference in surface features between the two synthetic skins and rat skin, the skin-cream had a comparable affect on all three samples. “The skin cream reduced the surface roughness, increased the skin’s ability to absorb moisture from the environment, and softened the skin surface,” said Bhushan.

Even before the addition of the skin cream, the synthetic and rat skins appeared comparable. Although the synthetic skins lacked hair follicles, they had similar roughness, meaning the distance between the highest point and lowest points on the skins’ surfaces were similar.

“After treatment with skin cream, the trends of the peak-to-valley distance of the two synthetic skins and rat skin were the same, and both of them decreased. This indicates the skin cream treatment smoothed the skin surface,” said Bhushan.

Bhushan explains that their future work will involve improving testing methods for measuring certain properties such as surface roughness. They also want to test a different skin cream.

Contact: Bharat Bhushan, (614) 292-0651;
Media Contact: Pam Frost Gorder, (614) 292-9475;

Jessica Orwig | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>