Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For testing skin cream, synthetic skin may be as good as the real thing

19.04.2011
New research suggests that currently available types of synthetic skin may now be good enough to imitate animal skin in laboratory tests, and may be on their way to truly simulating human skin in the future.

Researchers compared the response of synthetic skins to rat skin when they were both exposed to a generic skin cream treatment, and the results indicated they both reacted similarly.

The scientists used high-resolution images of two types of synthetic skin and samples of rat skin to discover similarities on microscopic scales.

The findings have implications for the treatment of burn victims.

When a person’s body is severely burned, he or she may not have enough healthy skin remaining to attempt healing the burns through skin cell regeneration with his or her own skin. In this case, synthetic skin or animal skin provides a potential substitute. But the use of animal skin comes with a variety of problems.

“In addition to ethical issues, animal skin is hard to obtain, expensive, and gives highly variable results because of individual skin variability,” said Bharat Bhushan, Ohio Eminent Scholar and the Howard D. Winbigler Professor of mechanical engineering at Ohio State University.

“Animal skin will vary from animal to animal, which makes it hard to anticipate how it might affect burnt victims, individually,” Bhushan said. “But, synthetic skin’s composition is consistent, making it a more reliable product,” he continued.

Bhushan’s research will appear in the June 5 issue of the Journal of Applied Polymer Science.

Bhushan and his colleague Wei Tang, an engineer at China University of Mining and Technology, compared two different types of synthetic skin to rat skin. The first synthetic skin was a commercially available skin purchased from Smooth-On, Inc. of Easton, Pennsylvania. The second synthetic skin was produced in Bhushan’s lab. Ohio State’s University Lab Animal Resources provided the rat skin samples.

Whether a synthetic skin feels and acts like real skin is very important, Bhushan explained. The skin must stand up to environmental effects such as sunlight or rain, while maintaining its texture and consistency. Scientists have continued to improve the practical and aesthetic properties of synthetic skin, which suggests it may soon be ready to replace animal skin and, farther in the future, human skin.

“Right now, our main concern is to determine whether the synthetic skin behaves like any real skin. Then, scientists can go on to more complex problems like modeling synthetic products that behave exactly like human skin,” Bhushan said.

Bhushan is an expert at measuring effects on tiny scales, such as a nanometer, or billionth of a meter, which is important in skin research.

“Cellular events, like the effective and accurate delivery of drugs and the absorption of skincare products – these things occur at the nanoscale,” explained Bhushan.

Using a highly sensitive microscope, known as an atomic force microscope, Bhushan and Tang were able to view the skin and the affects of an applied skin cream on a scale of about 100 nanometers. The average width of a human hair is approximately 1,000 times larger.

Despite the difference in surface features between the two synthetic skins and rat skin, the skin-cream had a comparable affect on all three samples. “The skin cream reduced the surface roughness, increased the skin’s ability to absorb moisture from the environment, and softened the skin surface,” said Bhushan.

Even before the addition of the skin cream, the synthetic and rat skins appeared comparable. Although the synthetic skins lacked hair follicles, they had similar roughness, meaning the distance between the highest point and lowest points on the skins’ surfaces were similar.

“After treatment with skin cream, the trends of the peak-to-valley distance of the two synthetic skins and rat skin were the same, and both of them decreased. This indicates the skin cream treatment smoothed the skin surface,” said Bhushan.

Bhushan explains that their future work will involve improving testing methods for measuring certain properties such as surface roughness. They also want to test a different skin cream.

Contact: Bharat Bhushan, (614) 292-0651; bhushan.2@osu.edu
Media Contact: Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Jessica Orwig | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>