Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test for safer biomedical research results

03.08.2009
In cancer research, as in most other biomedical sciences, they are playing a key role: living cells, kept in sterile plastic containers with red culture media populating incubators in laboratories around the world.

But do researchers always know what is really living in their culture dishes? Under the microscope, different cell lines are almost impossible to distinguish from each other. When these important research objects stop growing without apparent reason – is it because of the manipulations by the scientists or because of an invisible viral or bacterial infection?

Contaminations with other cell lines or pathogenic agents are a common and well-known problem. Often they are the reason why cell experiments fail to produce useable or reproducible results. Even worse, laboratory staff can get infected with dangerous pathogens from a cell culture.

To make those important cell culture experiments safer, DKFZ researchers Dr. Markus Schmitt and Dr. Michael Pawlita have developed a test which is able to identify 37 different cell contaminations in a single run. The researchers have tested the system in over 700 samples from different research labs and have now published their results.

The method called "Multiplex cell Contamination Test" (McCT) detects not only wide-spread viruses but also a number of mycoplasmas, which are considered the major contaminators of cell cultures. In addition, the test checks the cells for their origin. Thus, if dog genetic material is found in what are supposed to be monkey cells, then a contamination of the cell culture is obvious. The test also includes detection of commonly used standard cell lines. Contamination with the fast-growing cancer cell line HeLa, for example, is a dreaded source of false results.

Pawlita and Schmitt found contaminations in a high percentage of cell samples. Twenty-two percent of tested cultures were contaminated with one of the various types of the parasitic bacterium called mycoplasma. "What we noticed about the results," says Markus Schmitt, "was that contaminations were frequent in some laboratories, while others sent in cultures that were constantly clean. Thus, care in laboratory work seems to play an important role."

The test is highly specific and needs no more than ten copies of foreign DNA in the cell sample to be positive. This is a sensitivity which is comparable to or even higher than those of previously available commercial mycoplasma tests. McCT results are reproducible to 99.6 percent. The method is based on multiplication of specific DNA sequences by polymerase chain reaction and subsequent detection of the multiplied DNA regions. A special advantage of the new test is that it can be carried out on a high-throughput basis. The DKFZ researchers can manage up to 1,000 tests per week.

Schmitt und Pawlita offer the service to external scientists and research institutes via the Steinbeis Transfer Center "Multiplexion", a DKFZ spin-off. If you are interested, please visit www.multiplexion.com for more information about the conditions.

Markus Schmitt und Michael Pawlita: High-throughput detection and multiplex identification of cell contaminations. Nucleic Acids Research 2009, DOI: 10.1093/nar/gkp581

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is the largest biomedical research institute in Germany and is a member of the Helmholtz Association of National Research Centers. More than 2,000 staff members, including 850 scientists, are investigating the mechanisms of cancer and are working to identify cancer risk factors. They provide the foundations for developing novel approaches in the prevention, diagnosis, and treatment of cancer. In addition, the staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The Center is funded by the German Federal Ministry of Education and Research (90%) and the State of Baden-Württemberg (10%).

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>