Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test for safer biomedical research results

03.08.2009
In cancer research, as in most other biomedical sciences, they are playing a key role: living cells, kept in sterile plastic containers with red culture media populating incubators in laboratories around the world.

But do researchers always know what is really living in their culture dishes? Under the microscope, different cell lines are almost impossible to distinguish from each other. When these important research objects stop growing without apparent reason – is it because of the manipulations by the scientists or because of an invisible viral or bacterial infection?

Contaminations with other cell lines or pathogenic agents are a common and well-known problem. Often they are the reason why cell experiments fail to produce useable or reproducible results. Even worse, laboratory staff can get infected with dangerous pathogens from a cell culture.

To make those important cell culture experiments safer, DKFZ researchers Dr. Markus Schmitt and Dr. Michael Pawlita have developed a test which is able to identify 37 different cell contaminations in a single run. The researchers have tested the system in over 700 samples from different research labs and have now published their results.

The method called "Multiplex cell Contamination Test" (McCT) detects not only wide-spread viruses but also a number of mycoplasmas, which are considered the major contaminators of cell cultures. In addition, the test checks the cells for their origin. Thus, if dog genetic material is found in what are supposed to be monkey cells, then a contamination of the cell culture is obvious. The test also includes detection of commonly used standard cell lines. Contamination with the fast-growing cancer cell line HeLa, for example, is a dreaded source of false results.

Pawlita and Schmitt found contaminations in a high percentage of cell samples. Twenty-two percent of tested cultures were contaminated with one of the various types of the parasitic bacterium called mycoplasma. "What we noticed about the results," says Markus Schmitt, "was that contaminations were frequent in some laboratories, while others sent in cultures that were constantly clean. Thus, care in laboratory work seems to play an important role."

The test is highly specific and needs no more than ten copies of foreign DNA in the cell sample to be positive. This is a sensitivity which is comparable to or even higher than those of previously available commercial mycoplasma tests. McCT results are reproducible to 99.6 percent. The method is based on multiplication of specific DNA sequences by polymerase chain reaction and subsequent detection of the multiplied DNA regions. A special advantage of the new test is that it can be carried out on a high-throughput basis. The DKFZ researchers can manage up to 1,000 tests per week.

Schmitt und Pawlita offer the service to external scientists and research institutes via the Steinbeis Transfer Center "Multiplexion", a DKFZ spin-off. If you are interested, please visit www.multiplexion.com for more information about the conditions.

Markus Schmitt und Michael Pawlita: High-throughput detection and multiplex identification of cell contaminations. Nucleic Acids Research 2009, DOI: 10.1093/nar/gkp581

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is the largest biomedical research institute in Germany and is a member of the Helmholtz Association of National Research Centers. More than 2,000 staff members, including 850 scientists, are investigating the mechanisms of cancer and are working to identify cancer risk factors. They provide the foundations for developing novel approaches in the prevention, diagnosis, and treatment of cancer. In addition, the staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The Center is funded by the German Federal Ministry of Education and Research (90%) and the State of Baden-Württemberg (10%).

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

The dispute about the origins of terahertz photoresponse in graphene results in a draw

25.04.2018 | Physics and Astronomy

Graphene origami as a mechanically tunable plasmonic structure for infrared detection

25.04.2018 | Materials Sciences

First form of therapy for childhood dementia CLN2 developed

25.04.2018 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>