Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test for safer biomedical research results

03.08.2009
In cancer research, as in most other biomedical sciences, they are playing a key role: living cells, kept in sterile plastic containers with red culture media populating incubators in laboratories around the world.

But do researchers always know what is really living in their culture dishes? Under the microscope, different cell lines are almost impossible to distinguish from each other. When these important research objects stop growing without apparent reason – is it because of the manipulations by the scientists or because of an invisible viral or bacterial infection?

Contaminations with other cell lines or pathogenic agents are a common and well-known problem. Often they are the reason why cell experiments fail to produce useable or reproducible results. Even worse, laboratory staff can get infected with dangerous pathogens from a cell culture.

To make those important cell culture experiments safer, DKFZ researchers Dr. Markus Schmitt and Dr. Michael Pawlita have developed a test which is able to identify 37 different cell contaminations in a single run. The researchers have tested the system in over 700 samples from different research labs and have now published their results.

The method called "Multiplex cell Contamination Test" (McCT) detects not only wide-spread viruses but also a number of mycoplasmas, which are considered the major contaminators of cell cultures. In addition, the test checks the cells for their origin. Thus, if dog genetic material is found in what are supposed to be monkey cells, then a contamination of the cell culture is obvious. The test also includes detection of commonly used standard cell lines. Contamination with the fast-growing cancer cell line HeLa, for example, is a dreaded source of false results.

Pawlita and Schmitt found contaminations in a high percentage of cell samples. Twenty-two percent of tested cultures were contaminated with one of the various types of the parasitic bacterium called mycoplasma. "What we noticed about the results," says Markus Schmitt, "was that contaminations were frequent in some laboratories, while others sent in cultures that were constantly clean. Thus, care in laboratory work seems to play an important role."

The test is highly specific and needs no more than ten copies of foreign DNA in the cell sample to be positive. This is a sensitivity which is comparable to or even higher than those of previously available commercial mycoplasma tests. McCT results are reproducible to 99.6 percent. The method is based on multiplication of specific DNA sequences by polymerase chain reaction and subsequent detection of the multiplied DNA regions. A special advantage of the new test is that it can be carried out on a high-throughput basis. The DKFZ researchers can manage up to 1,000 tests per week.

Schmitt und Pawlita offer the service to external scientists and research institutes via the Steinbeis Transfer Center "Multiplexion", a DKFZ spin-off. If you are interested, please visit www.multiplexion.com for more information about the conditions.

Markus Schmitt und Michael Pawlita: High-throughput detection and multiplex identification of cell contaminations. Nucleic Acids Research 2009, DOI: 10.1093/nar/gkp581

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is the largest biomedical research institute in Germany and is a member of the Helmholtz Association of National Research Centers. More than 2,000 staff members, including 850 scientists, are investigating the mechanisms of cancer and are working to identify cancer risk factors. They provide the foundations for developing novel approaches in the prevention, diagnosis, and treatment of cancer. In addition, the staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The Center is funded by the German Federal Ministry of Education and Research (90%) and the State of Baden-Württemberg (10%).

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>