Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Termites eavesdrop on competitors to survive

01.09.2009
The drywood termite, Cryptotermes secundus, eavesdrops on its more aggressive subterranean competitor, Coptotermes acinaciformis, to avoid contact with it, according to scientists from CSIRO Entomology and the University of New South Wales at the Australian Defence Force Academy.

Both species eat sound dry wood and can co-exist in the same tree but, while drywood termite colonies contain only about 200 individuals and are confined to one tree, colonies of Coptotermes – Australia’s dominant wood-eating termite – contain around a million individuals, including thousands of aggressive soldiers, and can forage on up to 20 trees simultaneously.

“We already knew that chewing termites generate vibrations which they use to determine wood size and quality, so it seemed possible that one species could detect another using these vibrations,” CSIRO Entomology’s Dr Theo Evans said.

“We already knew that chewing termites generate vibrations which they use to determine wood size and quality, so it seemed possible that one species could detect another using these vibrations,” CSIRO Entomology’s Dr Theo Evans said.“We found that Cryptotermes could use vibration signals to distinguish between their own and Coptotermes individuals. They would even respond to recorded signals.

“This is the first time the ability to identify a different species using only their vibration signals has been identified in termites.

“Because vibration signals move rapidly through wood and can be detected from a distance, the vulnerable species have an eavesdropping advantage as they can detect their aggressive relatives without having to come into contact with them.”

Dr Evans said the advantage to Cryptotermes in avoiding Coptotermes was made very clear in one trial where the Coptotermes tunnelled through a 20mm block of wood and killed all the Cryptotermes.

Cryptotermes and the ‘tree piping’ Coptotermes are heartwood eaters and are among the few termites groups that attack buildings. Eighty-five percent of Australian trees are infested with Coptotermes.

Coptotermes enter trees through their roots and it is their ‘tree piping’ that produces the raw material for the didgeridoo.

This research – conducted in collaboration with Professor Joseph Lai at UNSW@ADFA and with the support of the Australian Research Council – was recently published in the Proceedings of the Royal Society B.

Julie Carter | EurekAlert!
Further information:
http://www.csiro.au

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>