Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tentacles of venom: new study reveals all octopuses are venomous.

16.04.2009
Once thought to be only the realm of the blue-ringed octopus, researchers have now shown that all octopuses and cuttlefish, and some squid are venomous.

The work indicates that they all share a common, ancient venomous ancestor and highlights new avenues for drug discovery.

Conducted by scientists from the University of Melbourne, University of Brussels and Museum Victoria, the study was published in the Journal of Molecular Evolution.

Dr Bryan Fry from the Department of Biochemistry at the Bio21 Institute, University of Melbourne said that while the blue-ringed octopus species remain the only group that aredangerous to humans, the other species have been quietly using their venom for predation, such as paralysing a clam into opening its shell.

“Venoms are toxic proteins with specialised functions such as paralysing the nervous system” he said.

“We hope that by understanding the structure and mode of action of venom proteins we can benefit drug design for a range of conditions such as pain management, allergies and cancer.”

While many creatures have been examined as a basis for drug development, cephalopods (octopuses, cuttlefish and squid) remain an untapped resource and their venom may represent a unique class of compounds.

Dr Fry obtained tissue samples from cephalopods ranging from Hong Kong, the Coral Sea, the Great Barrier Reef and Antarctica. The team then analysed the genes for venom production from the different species and found that a venomous ancestor produced one set of venom proteins, but over time additional proteins were added to the chemical arsenal.

The origin of these genes also sheds light on the fundamentals of evolution, presenting a prime example of convergent evolution where species independently develop similar traits. The team will now work on understanding why very different types of venomous animals seem to consistently settle on the similar venom protein composition, and which physical or chemical properties make them predisposed to be useful as toxin.

“Not only will this allow us to understand how these animals have assembled their arsenals, but it will also allow us to better exploit them in the development of new drugs from venoms,” said Dr Fry.

“It does not seem a coincidence that some of the same protein types have been recruited for use as toxins across the animal kingdom.”

For more information:

Dr Bryan Fry
Department of Biochemistry and Molecular Biology
Bio21 Institute, University of Melbourne
Email: bgf@unimelb.edu.au

Nerissa Hannink | EurekAlert!
Further information:
http://www.unimelb.edu.au

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>