Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tension triggers muscle building - Scientists discover important mechanism for muscle building

14.03.2014

Skeletal muscles are built from small contractile units, the sarcomeres.

Many of these sarcomeres are connected in a well-ordered series to form myofibrils that span from one muscle end to the other. Contractions of these sarcomeres result in contraction of the entire muscle.


Are muscles (green) and tendons (red) under tension, sarcomeres form myofibrils and assemble like pearls on a chain (on the right in green). Picture: Manuela Weitkunat © MPI of Biochemistry

Scientists at the Max Planck Institute of Biochemistry (MPIB) in Munich-Martinsried recently identified a key mechanism how this muscle architecture is built during development.

“Mechanical tension is the essential trigger” explains Frank Schnorrer, group leader at the MPIB. “If tension is eliminated, no regular myofibrils, but only short, random protein assemblies can form. Such muscles are entirely non-functional”.

In order to move the body, skeletal muscles are pulling on the skeleton. For efficient muscle and skeletal movements it is essential that the muscle contracts only along a defined axis, for instance for the leg movement along the thigh. Such a directed contraction is achieved by the myofibrils that span through the entire length of the muscle.

At both ends, the myofibrils are anchored to the tendon cells, which themselves are linked to the skeleton. “Thereby, the entire force is transduced from the muscle to the skeleton,” Frank Schnorrer describes. How can the regular architecture of a many hundred sarcomeres long myofibril be built along a defined axis during muscle development?

PhD student Manuela Weitkunat and PostDoc Aynur Kaya-Çopur were investigating this question in the fruit fly Drosophila melanogaster. They discovered that shortly after the Drosophila flight muscles contact their tendons, mechanical tension is established.

This tension buildup occurs before sarcomeres are formed and reaches through the entire muscle-tendon-skeleton system. This tension axis equips the muscle with positional information along which the sarcomeres must form.

Absence of tension results in chaos

By using genetic mutations in the fly, the scientists of the Muscle Dynamics group have been able to block the attachment of flight muscles to tendons and thus eliminate tension formation in the system. As a consequence, muscles could not build long regular myofibrils anymore but instead distribute the sarcomeric protein complexes chaotically.

In order to directly test the influence of mechanical tension, the scientists used a laser to cut the tendons off the muscle. This strategy of tension release also led to a major defect in sarcomere and myofibril formation. “Based on these results, we are suggesting a new model of myofibril formation, which proposes tension dependent self-assembly of the sarcomeric components,” explains Frank Schnorrer.

“When a certain tension threshold is reached, myofibril formation is triggered. If tension is compromised, the sarcomeric components have no spatial information and assemble chaotically.”

As human muscles also contain myofibrils that are built by periodically arrayed sarcomeres, it is likely that a similar tension-based assembly model may also apply during human muscle development, so the scientists think. These results have now been published in the journal Current Biology.

Original Publication
M. Weitkunat, A. Kaya-Çopur, S.W. Grill and and F. Schnorrer: Tension and force-resistant attachment are essential for myofibrillogenesis in Drosophila flight muscle. Current Biology, March 13, 2014.
DOI: 10.1016/j.cub.2014.02.032

Contact
Dr. Frank Schnorrer
Muscle Dynamics
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: schnorre@biochem.mpg.de
http://www.biochem.mpg.de/schnorrer

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/4137023/067_schnorrer_muskelentwicklung - complete press release
http://www.biochem.mpg.de/schnorrer - website of the Research Group "Muscle Dynamics" (Frank Schnorrer)

Anja Konschak | Max-Planck-Institut

Further reports about: Biochemistry Drosophila Max-Planck-Institut Tension built mechanism myofibril skeleton triggers

More articles from Life Sciences:

nachricht Common bacteria on verge of becoming antibiotic-resistant superbugs
26.03.2015 | Washington University School of Medicine

nachricht Chemical tag marks future microRNAs for processing, study shows
25.03.2015 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Surface-modified nanoparticles endow coatings with combined properties

26.03.2015 | Trade Fair News

Novel sensor system provides continuous smart monitoring of machinery and plant equipment

26.03.2015 | Trade Fair News

Common bacteria on verge of becoming antibiotic-resistant superbugs

26.03.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>