Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tension triggers muscle building - Scientists discover important mechanism for muscle building

14.03.2014

Skeletal muscles are built from small contractile units, the sarcomeres.

Many of these sarcomeres are connected in a well-ordered series to form myofibrils that span from one muscle end to the other. Contractions of these sarcomeres result in contraction of the entire muscle.


Are muscles (green) and tendons (red) under tension, sarcomeres form myofibrils and assemble like pearls on a chain (on the right in green). Picture: Manuela Weitkunat © MPI of Biochemistry

Scientists at the Max Planck Institute of Biochemistry (MPIB) in Munich-Martinsried recently identified a key mechanism how this muscle architecture is built during development.

“Mechanical tension is the essential trigger” explains Frank Schnorrer, group leader at the MPIB. “If tension is eliminated, no regular myofibrils, but only short, random protein assemblies can form. Such muscles are entirely non-functional”.

In order to move the body, skeletal muscles are pulling on the skeleton. For efficient muscle and skeletal movements it is essential that the muscle contracts only along a defined axis, for instance for the leg movement along the thigh. Such a directed contraction is achieved by the myofibrils that span through the entire length of the muscle.

At both ends, the myofibrils are anchored to the tendon cells, which themselves are linked to the skeleton. “Thereby, the entire force is transduced from the muscle to the skeleton,” Frank Schnorrer describes. How can the regular architecture of a many hundred sarcomeres long myofibril be built along a defined axis during muscle development?

PhD student Manuela Weitkunat and PostDoc Aynur Kaya-Çopur were investigating this question in the fruit fly Drosophila melanogaster. They discovered that shortly after the Drosophila flight muscles contact their tendons, mechanical tension is established.

This tension buildup occurs before sarcomeres are formed and reaches through the entire muscle-tendon-skeleton system. This tension axis equips the muscle with positional information along which the sarcomeres must form.

Absence of tension results in chaos

By using genetic mutations in the fly, the scientists of the Muscle Dynamics group have been able to block the attachment of flight muscles to tendons and thus eliminate tension formation in the system. As a consequence, muscles could not build long regular myofibrils anymore but instead distribute the sarcomeric protein complexes chaotically.

In order to directly test the influence of mechanical tension, the scientists used a laser to cut the tendons off the muscle. This strategy of tension release also led to a major defect in sarcomere and myofibril formation. “Based on these results, we are suggesting a new model of myofibril formation, which proposes tension dependent self-assembly of the sarcomeric components,” explains Frank Schnorrer.

“When a certain tension threshold is reached, myofibril formation is triggered. If tension is compromised, the sarcomeric components have no spatial information and assemble chaotically.”

As human muscles also contain myofibrils that are built by periodically arrayed sarcomeres, it is likely that a similar tension-based assembly model may also apply during human muscle development, so the scientists think. These results have now been published in the journal Current Biology.

Original Publication
M. Weitkunat, A. Kaya-Çopur, S.W. Grill and and F. Schnorrer: Tension and force-resistant attachment are essential for myofibrillogenesis in Drosophila flight muscle. Current Biology, March 13, 2014.
DOI: 10.1016/j.cub.2014.02.032

Contact
Dr. Frank Schnorrer
Muscle Dynamics
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: schnorre@biochem.mpg.de
http://www.biochem.mpg.de/schnorrer

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/4137023/067_schnorrer_muskelentwicklung - complete press release
http://www.biochem.mpg.de/schnorrer - website of the Research Group "Muscle Dynamics" (Frank Schnorrer)

Anja Konschak | Max-Planck-Institut

Further reports about: Biochemistry Drosophila Max-Planck-Institut Tension built mechanism myofibril skeleton triggers

More articles from Life Sciences:

nachricht Neural efficiency hypothesis confirmed
28.07.2015 | ETH Zurich

nachricht Scientists study predator-prey behavior between sharks and turtles
28.07.2015 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Neural efficiency hypothesis confirmed

28.07.2015 | Life Sciences

Scientists study predator-prey behavior between sharks and turtles

28.07.2015 | Life Sciences

Tropical deforestation releases large amounts of soil carbon

28.07.2015 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>