Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temple-Penn researchers identify calcium 'accelerator' to keep cell power supply going

26.11.2012
Understanding the inner lives of mitochondria and their role in disease means becoming conversant with calcium channels

A team of scientists from Temple University School of Medicine and the University of Pennsylvania has moved another step closer to solving a decades-long mystery of how the all-important flow of calcium into the cell's power source, the mitochondria, is controlled.

By painstakingly shutting down the activity of 50 genes, one at a time, they have identified a protein, MCUR1, which hugs the inside of the mitochondrial membrane and is part of an elaborate mitochondrial channel pore system. MCUR1 acts as an accelerator to help regulate calcium coming into the mitochondria from the cell's large reservoir.

The results, appearing November 25, 2012 in an advance online issue of the journal Nature Cell Biology, may also point to new treatment opportunities. Understanding how to manipulate MCUR1 may help in the development of treatments for disease conditions involving excessive calcium in the cell, such as cardiovascular disease and stroke.

"Calcium is a key to regulate many fundamental processes in cells," said co-senior author Muniswamy Madesh, PhD, Assistant Professor of Biochemistry at Temple University School of Medicine and a member of Temple's Center for Translational Medicine. "Excessive calcium in the cell's mitochondria could lead to heart and neuronal mitochondrial dysfunction and cell death. This pathway could be contributing to disease conditions during ischemia/reperfusion injury and stroke, and this discovery opens up possible therapeutic interventions."

Maintaining calcium at an appropriate level is crucial for cells to work properly, and especially important in the mitochondria. Cells rely on mitochondria to generate usable energy in the form of the chemical ATP, which is necessary to carry out normal cellular and metabolic activities. ATP production in turn depends on calcium – more specifically, charged calcium ions – that can enter into the mitochondria from the cell's vast supply in the cytoplasm. Dr. Madesh, co-senior author Kevin Foskett, PhD, at the University of Pennsylvania, and their co-investigators recently described the role of a gatekeeper protein in maintaining a calcium "set point" under normal resting conditions in the mitochondria. But a long unanswered question remained: the details of how calcium entry into the mitochondria is controlled.

How MCUR1 Dictates Calcium Load

In the current study, Drs. Madesh and Foskett and their co-workers may have come closer to solving this puzzle. Dr. Madesh and his group sought to identify the genes involved in the flow of calcium into the mitochondria. They developed a way to use a technology called targeted RNA interference (RNAi) to screen 50 mitochondrial proteins, systematically testing whether eliminating the function of each of these genes individually altered the movement of calcium into the mitochondria. They found a mitochondrial inner membrane protein – MCUR1 – that regulates a calcium channel pore during active calcium uptake.

MCUR1 is part of a calcium channel pore called the uniporter, the existence of which has been known for some five decades. Recent studies identified two important pieces of the pore – a subunit protein, MCU, and the gatekeeper protein, MICU1, to maintain calcium levels at a resting, set point. The researchers found that MCUR1 interacts with MCU to accelerate the movement of calcium into mitochondria when the cell's calcium level rapidly rises.

"MCUR1 is an essential third component of the uniporter complex," Dr. Madesh said. "In the absence of MCUR1, mitochondrial calcium uptake is markedly reduced, with adverse cellular consequences, including compromised cellular bioenergetics."

Without this accelerator, the mitochondria channel pore alone cannot take up calcium. When MCUR1 is physically attached to the pore, it is functional, and when it is not attached, it is much less active. "The regulator is always on, and its activity level increases when the extra-mitochondrial calcium levels increase. When there is a high calcium level, say during a disease state, the MCUR1 senses this and facilitates the channel activity, dumping calcium inside," Dr. Madesh explained.

Calcium Control as a Targeted Therapeutic

Dr. Madesh explained that in some disease conditions – such as ischemic reperfusion injury (tissue damage that occurs when blood returns to tissue after a period without oxygen), stroke involving brain injury from ischemia, and myocardial infarction – calcium floods into the mitochondria. "The mitochondria have a massive membrane potential and grab external calcium. The mitochondria then are overloaded and rupture, leading to cell death and possible organ injury."

Because some diseases are characterized by an overabundance of calcium in the mitochondria, a possible therapy could involve slowing down the amount of calcium coming into the mitochondria. "We want to control the calcium entering the mitochondria," he said.

"Further studies already underway should reveal the precise molecular mechanisms by which MCUR1 accelerates the channel pore MCU, providing insights into mitochondrial bioenergetics," said first author Karthik Mallilankaraman, PhD, a postdoctoral fellow in the Department of Biochemistry and the Center for Translational Medicine at Temple University School of Medicine.

Other investigators contributing to the work include Patrick Doonan, Harish C. Chandramoorthy, Krishna M. Irrinki, and Priyanka Madireddi, Temple University, Cesar Cardenas, Jun Yang, Marioly Muller, Russell Miller, Jill E. Kolesar, Brett Kaufman, University of Pennsylvania, Tunde Golenar, Gyorgy Csordas, Gyorgy Hajnoczky, Thomas Jefferson University, and Jordi Molgo, Institute de Neurobiologie Alfred Fessard, Laboratoire de Neurobiolgie Cellulaire et Moleculaire, France.

The research was supported by funding from the National Institutes of Health grants R01 HL086699, HL086699-01A2S1, 1S10RR027327-01, GM56328 and the American Heart Association.

About Temple Health

Temple Health refers to the health, education and research activities carried out by the affiliates of Temple University Health System and by Temple University School of Medicine.

Temple University Health System (TUHS) is a $1.4 billion academic health system dedicated to providing access to quality patient care and supporting excellence in medical education and research. The Health System consists of Temple University Hospital (TUH), ranked among the "Best Hospitals" in the region by U.S. News & World Report; TUH-Episcopal Campus; TUH-Northeastern Campus; Fox Chase Cancer Center, an NCI-designated comprehensive cancer center; Jeanes Hospital, a community-based hospital offering medical, surgical and emergency services; Temple Transport Team, a ground and air-ambulance company; and Temple Physicians, Inc., a network of community-based specialty and primary-care physician practices. TUHS is affiliated with Temple University School of Medicine.

Temple University School of Medicine (TUSM), established in 1901, is one of the nation's leading medical schools. Each year, the School of Medicine educates approximately 720 medical students and 140 graduate students. Based on its level of funding from the National Institutes of Health, Temple University School of Medicine is the second-highest ranked medical school in Philadelphia and the third-highest in the Commonwealth of Pennsylvania. According to U.S. News & World Report, TUSM is among the top 10 most applied-to medical schools in the nation.

Steven Benowitz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>