Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Telomeres: 2 genes linked to why they stretch in cancer cells

01.07.2011
Scientists at Johns Hopkins have provided more clues to one of the least understood phenomena in some cancers: why the "ends caps" of cellular DNA, called telomeres, lengthen instead of shorten.

In a study published online June 30 in Science Express, the Johns Hopkins researchers say they have identified two genes that, when defective, may cause these telomere elongations.

Telomeres contain repeated sequences of DNA that, in normal cells, shorten each time a cell divides. Without telomeres, the cell division-related shortening could snip off a cell's genes and disrupt key cell functions. Most cancer cells, naturally prone to divide rapidly, use high amounts of an enzyme called telomerase to keep their telomeres intact. Yet, some cancer cells are known to maintain their telomere length without help from telomerase.

With no increased production of telomerase, scientists were left to wonder how cancer cells managed to maintain their telomeres, a phenomenon known as "alternative lengthening of telomeres."

"Finding the genes responsible for alternative lengthening of telomeres is the first step in understanding this process and provides opportunities to develop new drug therapies," says Nickolas Papadopoulos, Ph.D., associate professor at the Johns Hopkins Kimmel Cancer Center and director of translational genetics at Johns Hopkins' Ludwig Center.

The first clues to the genes linked to the process came from a study led by Papadopoulos that mapped the genome of pancreatic neuroendocrine tumors, published in the Jan. 20 issue of Science Express. The most prevalent gene alterations in those tumors occurred in genes that include ATRX and DAXX. Proteins made by these genes interact with specific portions of DNA to alter how its chemical letters are read. ATRX and DAXX had also been linked to similar functions in the telomere region, says Alan Meeker, Ph.D., assistant professor of pathology, urology and oncology at Johns Hopkins.

Following a hunch, Meeker and his colleagues took a closer look at the two genes and their specific role in telomere lengthening. With tissue samples from 41 patients with pancreatic neuroendocrine tumors collected during the genome mapping project, the scientists found characteristic signatures of alternative telomere lengthening in 25 of them. Fluorescent dyes targeted specifically to telomeres showed "huge aggregates of telomere DNA" in the 25 samples, with each fluorescent spot holding about 100 times more telomere DNA than normal cells, according to Meeker.

Nineteen of the 25 samples that glowed positive for alternative telomere lengthening had either ATRX or DAXX mutations. Six of those 25 samples did not contain ATRX or DAXX mutations, but the tumor cells showed no expression of these two genes. The remaining 16 samples with no alternative lengthening lacked mutations and had adequate ATRX and DAXX expression.

"We saw a 100 percent correlation between abnormalities in ATRX and DAXX and alternative lengthening of telomeres," says Meeker.

Among 439 other samples of tumors tested by Meeker, Papadopoulos and colleagues, ATRX mutations were found in several brain cancer types, including pediatric and adult glioblastoma samples provided by Hai Yan, M.D., Ph.D., and Darell Bigner, M.D., Ph.D., of Duke University.

Meeker and colleagues tested the telomeres status in glioblastoma samples with tissue available for the assay. All eight glioblastoma tissue samples with ATRX mutations showed the characteristic bright glow of their telomeres, indicative of alternative lengthening, and lack of ATRX expression.

Although the Johns Hopkins team does not yet have an explanation for how the genes do their lengthening work in cancer, Meeker speculates that the mutations alter the way that telomere DNA is packaged, exposing those areas to instability.

Papadopoulos' genome mapping studies showed that patients with pancreatic neuroendocrine tumors containing ATRX/DAXX mutations had better survival than those without the mutations.

"If the correlation holds up, we could use alternative lengthening of telomeres and ATRX/DAXX mutations as a method of determining a patient's prognosis in addition to developing treatments that target these genes," says Meeker.

Funding for the study was provided by the Caring for Carcinoid Foundation, a nonprofit foundation that funds research on carcinoid cancer, pancreatic neuroendocrine cancer, and related neuroendocrine cancers, the Lustgarten Foundation for Pancreatic Cancer Research, the Virginia and D.K. Ludwig Fund for Cancer, National Institutes of Health, the Sol Goldman Pancreatic Cancer Research Center, the American Cancer Society, the Pediatric Brain Tumor Foundation Institute, the Duke Comprehensive Cancer Center Core, the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo, and the Department of Defense Breast Cancer Research Program.

Co-authors of the research include Christopher M Heaphy, Roeland F de Wilde, Yuchen Jiao, Alison P Klein, Barish H Edil, Kenneth W Kinzler, Bert Vogelstein, Ralph H Hruban, Anirban Maitra, Chetan Bettegowda, Fausto J Rodriguez, Charles G Eberhart, and Sachidanand Hebbar from Johns Hopkins; Chanjuan Shi from Vanderbilt University; Johan A Offerhaus from the University Medical Center Utrecht, the Netherlands; Roger McLendon, B. Ahmed Rasheed, Yiping He, Hai Yan, and Darell D. Bigner from Duke University; and Sueli Mieko Oba-Shinjo and Suely Kazue Nagahashi Marie from the University of Sao Paulo, Brazil.

Photo of fluorescent telomeres in pancreatic neuroendocrine tumor cells available upon request.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>