Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Telomere length influences cancer cell differentiation

28.06.2013
Researchers from the Japanese Foundation for Cancer Research in Tokyo have discovered that forced elongation of telomeres (extensions on the end of chromosomes) promotes the differentiation of cancer cells, probably reducing malignancy, which is strongly associated with a loss of cell differentiation. They report their findings in a manuscript published online ahead of print, in the journal Molecular and Cellular Biology.

"Cancer cells may maintain short telomeres to maintain their undifferentiated state," says Hiroyuki Seimiya, a researcher on the study.

Telomeres are protective extensions on the ends of chromosomes, which shorten as cells age, like an hourglass running down. They protect the end of the chromosome from deterioration or from fusion with neighboring chromosomes. Without telomeres chromosomes would progressively lose genetic information as cells divide and replicate.

Cancer cells have shorter telomeres compared to healthy cells, but they guard their immortality by maintaining these telomeres' length.

In the study, the forced elongation of cancer cells' telomeres suppressed a number of genes and proteins that appear to be involved in tumor malignancy, according to the report. For example, one of these factors, N-cadherin, is involved in prostate cancer metastasis.

Based on their results, the investigators now propose that telomeres also modulate the behavior of cells by controlling gene expression, by as yet unknown mechanisms, says Seimiya. His research, he says, may ultimately lead to new types of treatments for cancer.

A copy of the article can be found online at http://bit.ly/asmtip0613d. Formal publication is scheduled for the August 2013 issue of Molecular and Cellular Biology.

Molecular and Cellular Biology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>