Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Telomere length as an indicator of life expectancy for the southern giant petrel

18.01.2011
The length of telomeres, the DNA fragments that protect the ends of chromosomes from deterioration, could be an indicator of life expectancy in the southern giant petrel (Macronectes giganteus), an emblematic species of the Antarctic and sub-Antarctic regions, according to an article published in the journal Behavioral Ecology by an international group of researchers including Dr. Jacob González-Solís, from the UB’s Department of Animal Biology and the Institute of Research of the Biodiversity (IRBio) at the University of Barcelona.

The project on which the article is based, which is directed by the expert Pat Monhagan (University of Glasgow, UK), also reveals that adult male giant petrels have shorter telomere lengths than females, a genetic difference that had not been documented until now in a scientific study of a bird species.

Telomeres, situated at the terminal end of chromosomes, are key elements in cell division. According to international research studies, telomeres shorten progressively with each cell division, and this reduction in length is associated with cell aging. The 2009 Nobel Prize for Medicine, awarded to Elizabeth H. Blackburn, Carol W. Greider and Jack Szostak, reflects the importance of the biological role of telomeres in cellular and molecular machinery.

The article in Behavioral Ecology focuses on a study of the giant petrel, a large scavenger found in the Arctic and sub-Antarctic regions which displays significant differences between males and females (size, behaviour, diet, etc), carried out in a breeding colony on Bird Island in South Georgia. “The giant petrel is a bird that can live over 50 years, making it ideal for studies of longevity”, says Dr. González-Solís, who nevertheless explains that, “It is not easy to study the effects of longevity in wild species. You need to be able to work with communities that have been extensively observed since the mid-part of the 20th century, which is the case of the colony on Bird Island, where we have been able to monitor petrels in different age groups”.

Why telomere length is different?

Male telomere length is known to be shorter in humans and in other animal species such as rats. The article in Behavioral Ecology looks at the genetic material of red blood cell samples taken from giant petrels and is the first research study to reveal differences in telomere length between males and females of the same bird species, raising the question of why telomere shortening is more pronounced in males than females. There appears to be no single explanation, although for González-Solís the different lifestyles of males and females may be one, if not the only, explanation: “There is a clear division of roles between males and females, particularly as regards feeding: males compete for the prey of seals and penguins on Antarctic beaches, whereas females feed on marine species including fish, squid or krill”. When animals have to compete for food, size is an advantage, and González-Solís explains that, “the specialized feeding strategies of males have led to an increase in body size, which raises the cell division rate and creates greater oxidative stress, hence the telomere shortening observed”. As he explains, “this is not consistent with observations in other dimorphic species such as the wandering albatross or the European shag, in which telomere length is similar between sexes”.

The difference in telomere length between males and females is also found in chicks, a finding that cannot be accounted for by lifestyle differences, since, as González-Solís explains, “At this stage the birds have not begun to display different behavioural patterns, so the different roles of males and females cannot be the only reason for the disparity in telomere lengths. In the case of chicks, perhaps it is simply that sexual dimorphism imposes different growth rates, which may promote greater telomere shortening in males. At the moment there are a number of theories and more research will be needed to work through them”.

Telomere length and bird survival

Another interesting finding of the study is the relationship between telomere length and bird survival, with those that died during the 8-year period after sampling having significantly shorter telomere lengths on average at the time of measurement. This suggests that telomere length may partially determine the life expectancy of giant petrels, independently of age and sex.

The southern giant petrel, a frequent victim of accidental capture by trawlers, is included on the Red List of Threatened Species maintained by the International Union for Conservation of Nature (IUCN). With an adult population that has fallen to 100,000, it is believed that thousands of these birds were killed inadvertently by illegal fishing vessels during the 1990s. In its future work, the team behind the study will focus on population genetics studies of colonies of giant petrels, a species with an extreme life-history strategy combining longevity and a low reproductive rate – females lay only one egg in each breeding season – that makes adults highly vulnerable to any type of survival threat.

Rosa Martínez | alfa
Further information:
http://www.ub.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>