Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Television for the Nose

Progress toward smell television: targeted release of various scents from individually addressable chambers

3-D movies, Dolby surround for a more realistic audio experience—virtual reality is on the march. And how much more realistic would a film be if a barbecue actually smelled of grilled meat or if you could smell a sea breeze when the protagonist takes his love for an evening stroll on the beach?

This type of smell experience may become reality for the home television viewer in the not-too-distant future. In the journal Angewandte Chemie, a team led by Jongmin Kim at Samsung Electronics in Korea and Sungho Jin at the University of California, San Diego, USA, have now introduced a new approach for making a compact device that could fit on the back of a television to produce thousands of different scents.

Previous technologies for the controlled release of scents were not simple enough and were much too crude for the sensitive electronics of our televisions and video players. An odor module needs to be small and robust and deliver results that are reproducible over multiple cycles; the response should be rapid and the user should be able to regulate the strength of the odor. Kim, Jin, and their co-workers aim to overcome these challenges with their new concept.

Their method is based on an array of individual cells that are filled with scent-containing solutions. The miniature containers are made from a cross-linked silicone polymer. Except for a tiny hole in the top, they are completely sealed. A needle can be sued to inject a different scent solution into each cell. In the “off” state the tiny hole stays closed. The scent containers are switched on by heating. This causes the silicone to expand and the pressure on the inside to increase, forcing a small amount of gas-phase scent out of the tiny hole.

A two-dimensional lattice of heating wires, known as an X-Y matrix, can be used to specifically address individual containers. The scientists prepared a prototype, which they successfully tested with two different perfumes, “Live by Jenifer Lopez” and “Passion by Elizabeth Taylor”. Testers could detect both scents and differentiate between them.

“Our new concept is not only of interest for the entertainment industry,” state Kim and Jin, “it could also be used for combinatorial studies of gas-phase reactions and the development of vapor-based pharmaceuticals.”

Author: Sungho Jin, University of California, San Diego (USA),
Title: An X–Y Addressable Matrix Odor-Releasing System Using an On–Off Switchable Device

Angewandte Chemie International Edition, Permalink to the article:

Sungho Jin | Angewandte Chemie
Further information:

Further reports about: 3-D movies Angewandte Chemie Bionic Nose Virtual Reality television

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>