Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology provides a deep view into protein structures

10.07.2012
Proteins usually carry out their biological function when their polypeptide chain is arranged into a stable three-dimensional structure.

The specific structure of a protein is stabilized by numerous hydrogen bonds that connect individual amino acids. Using an innovative method, namely Nuclear Magnetic Resonance (NMR) spectroscopy in combination with high pressure, Dr. Nisius and Prof. Grzesiek from the Biozentrum of the University of Basel have provided important new insights into the hydrogen bond network of Ubiquitin and its importance for the stability of this model protein. Their findings have now been published in the renowned scientific journal Nature Chemistry.


Under pressure: scientists investigate hydrogen bonds under pressures of up to 2500 bar

Proteins consist of a sequence of amino acids and have important physiological functions, such as catalysis or transport of metabolic products. To perform their physiological role, proteins need to fold their linear amino acid chains into a stable three-dimensional structure. In part, the spatial arrangement is determined by a network of hydrogen bonds. However so far it was unclear to what extent individual hydrogen bonds contribute to the stability of a structure. Using a newly developed high pressure cell and NMR method Dr. Nisius and Prof. Grzesiek could, for the first time, completely characterize the stability of individual hydrogen bonds in the protein Ubiquitin.

Particular stability of key, long-range hydrogen bonds
The stability of a thermodynamic system, such as a protein, can be analyzed by subjecting it to variations in pressure and temperature. Using high resolution NMR methods and a newly developed pressure cell Nisius and Grzesiek have precisely analyzed the contributions of 31 backbone hydrogen bonds to the conformational stability of the model protein Ubiquitin. The pressure cell allows the observation of individual protein hydrogen bonds in the NMR instrument under pressures of up to 2500 bar. The latter is equivalent to the hydrostatic pressure of a water column of 25 km height. Hydrogen bonds spanning small sequence separations between the interacting amino acids were found to be particularly stable, whereas hydrogen bonds that span over larger sequence separations showed generally lower stability. Surprisingly, however, there are exceptions to this rule: hydrogen bonds that connect very important parts of Ubiquitin, can span over large sequence separations and be nevertheless extremely stable. In particular, such unusually stable long-range hydrogen bonds were found in the structural part where Ubiquitin attaches to target proteins. By this covalent attachment, ubiquitin labels misfolded target proteins for degradation and fulfills its function in cellular protein quality control. The specific stabilization of hydrogen bonds at this site is therefore very important to preserve the structural integrity of Ubiquitin during function and to achieve stability for the entire protein.
Future oriented technology: High pressure-NMR
By the high pressure NMR characterization, Nisius and Grzesiek could identify the structural parts of Ubiquitin that are responsible for its unusually high thermodynamic stability. Their study is a further example of the multifaceted and growing range of NMR applications. The technology not only provides information on the three-dimensional structure of biomolecules, but also on their thermodynamic and kinetic characteristics, and thus is a crucial tool to understand biomolecular function at atomic resolution.
Original Article:
Lydia Nisius and Stephan Grzesiek (2012). Key stabilizing elements of protein structure identified through pressure and temperature perturbation of its hydrogen bond network. Nature Chemistry, Published online 8. July, 2012.
Further Information:
Prof. Dr. Stephan Grzesiek, Biozentrum of the University of Basel, Structural Biology & Biophysics, Klingelbergstrasse 50/70, 4056 Basel, Tel: +41 61 267 21 00, E-Mail: stephan.grzesiek@unibas.ch

Dr. Thomas Schnyder | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>