Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology provides a deep view into protein structures

10.07.2012
Proteins usually carry out their biological function when their polypeptide chain is arranged into a stable three-dimensional structure.

The specific structure of a protein is stabilized by numerous hydrogen bonds that connect individual amino acids. Using an innovative method, namely Nuclear Magnetic Resonance (NMR) spectroscopy in combination with high pressure, Dr. Nisius and Prof. Grzesiek from the Biozentrum of the University of Basel have provided important new insights into the hydrogen bond network of Ubiquitin and its importance for the stability of this model protein. Their findings have now been published in the renowned scientific journal Nature Chemistry.


Under pressure: scientists investigate hydrogen bonds under pressures of up to 2500 bar

Proteins consist of a sequence of amino acids and have important physiological functions, such as catalysis or transport of metabolic products. To perform their physiological role, proteins need to fold their linear amino acid chains into a stable three-dimensional structure. In part, the spatial arrangement is determined by a network of hydrogen bonds. However so far it was unclear to what extent individual hydrogen bonds contribute to the stability of a structure. Using a newly developed high pressure cell and NMR method Dr. Nisius and Prof. Grzesiek could, for the first time, completely characterize the stability of individual hydrogen bonds in the protein Ubiquitin.

Particular stability of key, long-range hydrogen bonds
The stability of a thermodynamic system, such as a protein, can be analyzed by subjecting it to variations in pressure and temperature. Using high resolution NMR methods and a newly developed pressure cell Nisius and Grzesiek have precisely analyzed the contributions of 31 backbone hydrogen bonds to the conformational stability of the model protein Ubiquitin. The pressure cell allows the observation of individual protein hydrogen bonds in the NMR instrument under pressures of up to 2500 bar. The latter is equivalent to the hydrostatic pressure of a water column of 25 km height. Hydrogen bonds spanning small sequence separations between the interacting amino acids were found to be particularly stable, whereas hydrogen bonds that span over larger sequence separations showed generally lower stability. Surprisingly, however, there are exceptions to this rule: hydrogen bonds that connect very important parts of Ubiquitin, can span over large sequence separations and be nevertheless extremely stable. In particular, such unusually stable long-range hydrogen bonds were found in the structural part where Ubiquitin attaches to target proteins. By this covalent attachment, ubiquitin labels misfolded target proteins for degradation and fulfills its function in cellular protein quality control. The specific stabilization of hydrogen bonds at this site is therefore very important to preserve the structural integrity of Ubiquitin during function and to achieve stability for the entire protein.
Future oriented technology: High pressure-NMR
By the high pressure NMR characterization, Nisius and Grzesiek could identify the structural parts of Ubiquitin that are responsible for its unusually high thermodynamic stability. Their study is a further example of the multifaceted and growing range of NMR applications. The technology not only provides information on the three-dimensional structure of biomolecules, but also on their thermodynamic and kinetic characteristics, and thus is a crucial tool to understand biomolecular function at atomic resolution.
Original Article:
Lydia Nisius and Stephan Grzesiek (2012). Key stabilizing elements of protein structure identified through pressure and temperature perturbation of its hydrogen bond network. Nature Chemistry, Published online 8. July, 2012.
Further Information:
Prof. Dr. Stephan Grzesiek, Biozentrum of the University of Basel, Structural Biology & Biophysics, Klingelbergstrasse 50/70, 4056 Basel, Tel: +41 61 267 21 00, E-Mail: stephan.grzesiek@unibas.ch

Dr. Thomas Schnyder | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>