Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technologies gearing up to meet rising demand for vital malaria drugs

19.11.2008
Three emerging technologies have the potential to significantly improve supplies of drugs to combat malaria, according to a report published today.

With renewed efforts to eradicate malaria – a disease which kills up to one million people every year, most of them young children – the global demand for antimalarials is set to increase dramatically over the next four years.

The report, launched at a special meeting of the All Party Parliamentary Group for Malaria at Westminster, assesses a portfolio of new technologies, collectively known as The Artemisinin Enterprise:

• The Centre for Novel Agricultural Products at the University of York is using fast-track plant breeding to increase yields of artemisinin from the medicinal plant.

• The Institute for One World Health is using synthetic biology to produce artemisinin through fermentation and subsequent chemical conversion.

• The Medicines for Malaria Venture is developing novel synthetic artemisinin-like compounds.

The World Health Organization recommends artemisinin combination therapies (ACTs) as the most effective treatments available today. Around 100 million Artemisinin-based Combination Therapies (ACTs) were sold in 2006, but forecasts show that demand will at least double over the next four years, potentially growing to over 300 million doses annually.

Artemisinin is extracted from the medicinal plant Artemisia annua but production of the drugs is expensive and the quality variable. Uneven supplies have caused prices to vary from USD $1200/kg to $120 between 2005 and 2008 leading to high levels of uncertainty in the market for growers and pharmaceutical companies.There is growing concern that the current global supply of artemisinin cannot reliably and affordably produce the quantities or quality that will be required for ACT production.

Today’s report concludes that the outputs from all three technologies can collectively help satisfy the projected global demand for malaria treatments by providing alternative sources of artemisinin, stabilising the supply of effective antimalarial drugs such as ACTs and reducing the cost of artemisinin production.

The new technologies will only be used to support the production of high quality combination therapies for malaria. Such therapies are essential to counter the development of artemisinin resistance, a major threat to effectively fighting the disease. These technologies are envisaged to come online in the next three to seven years.

The report recommends measures to help to ensure the effective introduction of the new technologies of the Artemisinin Enterprise into the ACT supply chain. It also highlights suggestions for the wider malaria community, aimed at improving the supply of ACTs in other ways. These include creating buffer stocks, harmonizing the regulatory approach for faster ACT approvals and improving demand forecasting.

The report is based on the conclusions of the Artemisinin Enterprise Conference 2008, which was sponsored by the Bill and Melinda Gates Foundation and the Roll Back Malaria Partnership and hosted by the University of York.

Elspeth Bartlet | alfa
Further information:
http://www.york.ac.uk/admin/presspr/pressreleases/aereport.htm

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>