Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New techniques for stapling peptides could spur development of drugs for cancer

Researchers at the University at Buffalo have devised two new ways of "stapling" peptide helices to prevent these medically important molecules from losing their shape and degrading in the presence of enzymes.

The discovery could help speed the development of peptide-based drugs against diseases including cancer. UB scientists say the methods they pioneered are simpler than existing techniques, one of which employs an expensive ruthenium catalyst to connect chemical side chains that protrude from the main body of helical peptides.

"There's a lot of potential here. Our chemistry is unique," said Qing Lin, the UB assistant professor of chemistry who led the research. "There are not that many new drug targets out there today, which partly explains the declining number of FDA-approved new drugs in recent years. So there's a need to come up with new technologies that can overcome this barrier. To this end, stapled peptides could open a whole host of new targets for therapies."

Stapled peptides work as treatments against disease by binding tightly to target proteins within cells, thus disrupting specific protein-protein interactions that regulate many biological processes, including response to stress, signaling within cells, and cell death.

In their native state, peptides -- short strings of amino acids -- shift between different shapes, including a helix, sheet and random coil. Stapling the peptides' side chains encourages the peptides to adopt and stay in a helix, which enables them to enter cells more easily. The helical conformation also makes it more difficult for enzymes to break the peptides down, Lin said.

The two processes Lin's team developed for stapling peptides are efficient, producing stapled peptides in high yields, said Timothy Dee, a commercialization manager for UB's Office of Science, Technology Transfer and Economic Outreach (STOR). Through STOR, UB is applying for patents to cover both stapling methods.

"Photoclick stapling," the first approach, involves synthesizing peptides that have alkenes in one side chain and tetrazoles in another. Under ultraviolet light, the two side chains form chemical bonds with one another.

A paper on photoclick stapling appeared online in Bioorganic and Medicinal Chemistry Letters in January and will appear later this year in the journal's print edition. Researchers first published on the subject in 2009 in Chemical Communications.

The second stapling technique Lin and his colleagues devised requires the synthesis of peptides carrying a pair of amino acids called cysteines that contain sulfur in their side chains. When scientists expose these peptides to a chemical that reacts selectively with the sulfur atoms, the chemical forms a "staple" that connects the two cysteine side chains.

Experts believe stapled peptides could treat a wide variety of health problems, including cancer and inflammatory, metabolic and infectious diseases. As evidence of the technology's promise, a company formed in 2005 to commercialize a ruthenium-based stapling method developed at Harvard University has reportedly raised about $60 million in venture capital and landed a deal with pharmaceutical giant Roche that could be worth more than $1 billion over time.

"The field is large enough for multiple players," Lin said. "Stapling is a technology that many people believe will create a new class of drug therapies, hitting new targets that other therapies can't. Our chemistry is distinct from what's already out there."

Lin and his group are particularly interested in developing anti-cancer therapeutics that increase the efficacy of chemotherapy by instructing cancer cells to self-destruct through "programmed cell death," a process called apoptosis.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Charlotte Hsu | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>