Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New techniques for cerebral white matter fiber tracing

11.09.2013
At present, fiber tracking algorithms are divided into deterministic tractography and probabilistic tractography.

In deterministic algorithms, scholars proposed the fiber assignment by continuous tracking algorithm, the tensor deflection algorithm, the tensorline algorithm.


Comparison between coronal anatomy and fiber tracking results of the patient with cerebral infarction. Credit: Neural Regeneration Research

Deterministic algorithms track fibers mainly depending on diffusion direction; however, they are susceptible to noise and partial volume effects, which result in the accumulation of tracking errors. Probabilistic algorithms can effectively reduce noise and partial volume effects, thus decreasing the accumulated errors and providing more fiber orientations.

Unfortunately, their calculations are very complicated, time-consuming and easy to produce additional ambiguous fibers, which make the application of these algorithms difficult. In response to these phenomena, Shan Jiang and colleagues from School of Mechanical Engineering, Tianjin University proposed the tri-linear interpolation algorithm for white matter fiber tracking.

A recent study from Jiang et al, published in the Neural Regeneration Research (Vol. 8, No. 23, 2013), selected a patient with acute infarction of the right basal ganglia and designed experiments based on either the tri-linear interpolation algorithm or tensorline algorithm. Fiber tracking in the same regions of interest (genu of the corpus callosum) was performed separately. The validity of the tri-linear interpolation algorithm was verified by quantitative analysis, and its feasibility in clinical diagnosis was confirmed by the contrast between tracking results and the disease condition of the patient as well as the actual brain anatomy.

Statistical results showed that the maximum length and average length of the white matter fibers tracked by the tri-linear interpolation algorithm were significantly longer. The tracking images of the fibers indicated that this method can obtain smoother tracked fibers, more obvious orientation and clearer details. Tracking fiber abnormalities are in good agreement with the actual condition of patients, and tracking displayed fibers that passed though the corpus callosum, which was consistent with the anatomical structures of the brain. Therefore, the tri-linear interpolation algorithm can achieve a clear, anatomically correct and reliable tracking result.

Article: " Tri-linear interpolation-based cerebral white matter fiber imaging," by Shan Jiang1, Pengfei Zhang1, Tong Han2, Weihua Liu1, Meixia Liu1 (1 School of Mechanical Engineering, Tianjin University, Tianjin 300072, China; 2 Medical Image Evaluation Center, Tianjin Huanhu Hospital, Tianjin 300060, China)

Jiang S, Zhang PF, Han T, Liu WH, Liu MX. Tri-linear interpolation-based cerebral white matter fiber imaging. Neural Regen Res. 2013;8(23):2155-2164.

Contact: Meng Zhao
eic@nrren.org
86-138-049-98773
Neural Regeneration Research
http://www.nrronline.org/
Full text: http://www.sjzsyj.org/CN/article/downloadArticleFile.do?attachType=PDF&id=687

Meng Zhao | EurekAlert!
Further information:
http://www.nrronline.org/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>