Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Yields Troves of Information From Nanoscale Bone Samples

24.06.2011
Engineering Researchers at Rensselaer Polytechnic Institute Have Developed New Process for the Microdissection and In-Depth Biochemical Analysis of Bone Tissue

A new technique developed at Rensselaer Polytechnic Institute allows researchers to collect large amounts of biochemical information from nanoscale bone samples.

Along with adding important new insights into the fight against osteoporosis, this innovation opens up an entirely new proteomics-based approach to analyzing bone quality. It could even aid the archeological and forensic study of human skeletons.

“We’re able to take very small, nanoscale-sized bone samples, and determine the protein signatures of the bone,” said Deepak Vashishth, head of the Department of Biomedical Engineering at Rensselaer, who led the study. “This is a relatively quick, easy way for us to determine the history of the bone – how and when it formed – as well as the quality of the bone, and its likelihood to fracture.”

Results of the study, titled “Biochemical Characterization of Major Bone-Matrix Proteins Using Nanoscale-Size Bone Samples and Proteomics Methodology,” were released online in late May by the journal Molecular & Cellular Proteomics. The journal, published by the American Society for Biochemistry and Molecular Biology, will also feature the paper in an upcoming print edition. The study may be viewed online at: http://bit.ly/lAfSfI.

The research, funded by the U.S. National Institutes of Health, was conducted in the laboratories of the Center for Biotechnology and Interdisciplinary Studies at Rensselaer.

Bones are primarily composed of mineral, with the remaining amount comprised of organic material. The vast majority of the organic material is collagen. The remaining non-collagenous organic material is a mixture of other proteins, which form an interlinked matrix. The quality of this matrix varies greatly with age, nutrition, and disease. Vashishth and his research group investigate this bone matrix to determine how the interaction and modification of individual proteins impact the development, structure, and strength of the overall bone.

In this study, they paired laser-capture microscopy with several other techniques to create an entirely new method for analyzing bone matrix. The analysis yields data about the concentration of different proteins in the bone matrix, which in turn leads to key information about the bone – such as when it was formed, how it has been modified, and if it is more or less prone to fracture.

Vashishth said this is an important step toward augmenting current osteoporosis diagnosis techniques, which measure bone loss and the quantity of bone present, with new, minimally invasive, proteomics-driven techniques for assessing the quality of the bone.

The young field of proteomics focuses on the structure and function of proteins, and is ripe for innovation, Vashishth said. The term “proteomics” echoes the word genomics, the study of genes. Proteomics seeks to decode the human proteome by documenting the structure, function, and interactions of proteins.

“This is kind of a new area, because bone fracture has always been looked at from a bone calcium perspective, a mineral perspective, and current osteoporosis treatment methods are all geared toward that,” he said. “In osteoporosis, very little attention has been paid to bone proteins. That’s why we’re very excited about our new proteomics-based method to read a bone’s protein signature, and assess the quality of the bone. I think it opens up a new avenue for approaching and studying osteoporosis.”

Like all tissues in the human body, bones regenerate themselves over time. Bones regenerate much slower than other tissues, however, and the skeleton takes about 10 years to gradually replace itself with new tissue. Different parts of a bone regenerate at different rates, meaning some areas of a bone may be older and more susceptible to fracture, while other areas of the same bone are newer and sturdier. Older and younger parts of a bone have different protein signatures and react differently to medical treatments. Vashishth said his new method is an easy way to help differentiate between different aged areas of bone, determine their quality, and forecast their susceptibility to fracture.

Finally, along with pushing forward the emerging field of bone proteomics and opening up new possibilities for studying and treating osteoporosis, Vashishth’s findings could prove useful to researchers in other areas who deal with bone. Forensics, biology, anthropology, archaeology, and other areas where bone samples are truly rare, small, and precious would likely find it useful to analyze bone protein signatures with minimal damage to the bone sample, he said. This protein signature information could offer new insight into how bones were formed, along with the nutrition and diet of those individuals.

Co-authors of the study are Wilfredo Colon, professor in the Rensselaer Department of Chemistry and Biological Chemistry; as well as postdoctoral researcher Grazyna Sroga and doctoral student Lamya Karim, both in the Rensselaer Department of Biomedical Engineering.

For more information on Vashishth and his research at Rensselaer, visit:

• Faculty Home Page
http://www.eng.rpi.edu/soe/index.php/faculty/154?soeid=vashid
• Proteins To Yield New Clues in Fight Against Osteoporosis
http://news.rpi.edu/update.do?artcenterkey=2771
• Rensselaer Names Vashishth New Head of Biomedical Engineering
http://news.rpi.edu/update.do?artcenterkey=2663
• Rensselaer Department of Biomedical Engineering
http://www.bme.rpi.edu/
Contact
Michael Mullaney
Rensselaer Polytechnic Institute
Troy, NY
518-276-6161
mullam@rpi.edu
www.rpi.edu/news
Visit the Rensselaer research and discovery blog: http://approach.rpi.edu
Follow us on Twitter: www.twitter.com/RPInews

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>