Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Yields Troves of Information From Nanoscale Bone Samples

24.06.2011
Engineering Researchers at Rensselaer Polytechnic Institute Have Developed New Process for the Microdissection and In-Depth Biochemical Analysis of Bone Tissue

A new technique developed at Rensselaer Polytechnic Institute allows researchers to collect large amounts of biochemical information from nanoscale bone samples.

Along with adding important new insights into the fight against osteoporosis, this innovation opens up an entirely new proteomics-based approach to analyzing bone quality. It could even aid the archeological and forensic study of human skeletons.

“We’re able to take very small, nanoscale-sized bone samples, and determine the protein signatures of the bone,” said Deepak Vashishth, head of the Department of Biomedical Engineering at Rensselaer, who led the study. “This is a relatively quick, easy way for us to determine the history of the bone – how and when it formed – as well as the quality of the bone, and its likelihood to fracture.”

Results of the study, titled “Biochemical Characterization of Major Bone-Matrix Proteins Using Nanoscale-Size Bone Samples and Proteomics Methodology,” were released online in late May by the journal Molecular & Cellular Proteomics. The journal, published by the American Society for Biochemistry and Molecular Biology, will also feature the paper in an upcoming print edition. The study may be viewed online at: http://bit.ly/lAfSfI.

The research, funded by the U.S. National Institutes of Health, was conducted in the laboratories of the Center for Biotechnology and Interdisciplinary Studies at Rensselaer.

Bones are primarily composed of mineral, with the remaining amount comprised of organic material. The vast majority of the organic material is collagen. The remaining non-collagenous organic material is a mixture of other proteins, which form an interlinked matrix. The quality of this matrix varies greatly with age, nutrition, and disease. Vashishth and his research group investigate this bone matrix to determine how the interaction and modification of individual proteins impact the development, structure, and strength of the overall bone.

In this study, they paired laser-capture microscopy with several other techniques to create an entirely new method for analyzing bone matrix. The analysis yields data about the concentration of different proteins in the bone matrix, which in turn leads to key information about the bone – such as when it was formed, how it has been modified, and if it is more or less prone to fracture.

Vashishth said this is an important step toward augmenting current osteoporosis diagnosis techniques, which measure bone loss and the quantity of bone present, with new, minimally invasive, proteomics-driven techniques for assessing the quality of the bone.

The young field of proteomics focuses on the structure and function of proteins, and is ripe for innovation, Vashishth said. The term “proteomics” echoes the word genomics, the study of genes. Proteomics seeks to decode the human proteome by documenting the structure, function, and interactions of proteins.

“This is kind of a new area, because bone fracture has always been looked at from a bone calcium perspective, a mineral perspective, and current osteoporosis treatment methods are all geared toward that,” he said. “In osteoporosis, very little attention has been paid to bone proteins. That’s why we’re very excited about our new proteomics-based method to read a bone’s protein signature, and assess the quality of the bone. I think it opens up a new avenue for approaching and studying osteoporosis.”

Like all tissues in the human body, bones regenerate themselves over time. Bones regenerate much slower than other tissues, however, and the skeleton takes about 10 years to gradually replace itself with new tissue. Different parts of a bone regenerate at different rates, meaning some areas of a bone may be older and more susceptible to fracture, while other areas of the same bone are newer and sturdier. Older and younger parts of a bone have different protein signatures and react differently to medical treatments. Vashishth said his new method is an easy way to help differentiate between different aged areas of bone, determine their quality, and forecast their susceptibility to fracture.

Finally, along with pushing forward the emerging field of bone proteomics and opening up new possibilities for studying and treating osteoporosis, Vashishth’s findings could prove useful to researchers in other areas who deal with bone. Forensics, biology, anthropology, archaeology, and other areas where bone samples are truly rare, small, and precious would likely find it useful to analyze bone protein signatures with minimal damage to the bone sample, he said. This protein signature information could offer new insight into how bones were formed, along with the nutrition and diet of those individuals.

Co-authors of the study are Wilfredo Colon, professor in the Rensselaer Department of Chemistry and Biological Chemistry; as well as postdoctoral researcher Grazyna Sroga and doctoral student Lamya Karim, both in the Rensselaer Department of Biomedical Engineering.

For more information on Vashishth and his research at Rensselaer, visit:

• Faculty Home Page
http://www.eng.rpi.edu/soe/index.php/faculty/154?soeid=vashid
• Proteins To Yield New Clues in Fight Against Osteoporosis
http://news.rpi.edu/update.do?artcenterkey=2771
• Rensselaer Names Vashishth New Head of Biomedical Engineering
http://news.rpi.edu/update.do?artcenterkey=2663
• Rensselaer Department of Biomedical Engineering
http://www.bme.rpi.edu/
Contact
Michael Mullaney
Rensselaer Polytechnic Institute
Troy, NY
518-276-6161
mullam@rpi.edu
www.rpi.edu/news
Visit the Rensselaer research and discovery blog: http://approach.rpi.edu
Follow us on Twitter: www.twitter.com/RPInews

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Life Sciences:

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>