Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique yields never-before-seen information critical to biofuels research

15.08.2012
Pioneering mass spectrometry methods developed at the U.S. Department of Energy’s (DOE’s) Ames Laboratory are helping plant biologists get their first glimpses of never-before-seen plant tissue structures.
The new method opens up new realms of study, ones that might have long-ranging implications for biofuels research and crop genetics.

“The data we’re seeing are unprecedented,” said Basil Nikolau, the Ames Laboratory faculty scientist heading up the project, funded by DOE’s Office of Science.

The laboratory’s team of researchers has developed a new more highly sensitive mass spectrometry technique to investigate metabolites, the small molecules that are the building blocks for plant biological processes.
Young-Jin Lee, a faculty scientist in Ames Laboratory’s Chemical and Biological Sciences Division, has successfully demonstrated the use of matrix-assisted laser deposition/ionization-mass spectrometry, or MALDI-MS, to map the lipids in cottonseed in a recent paper published in The Plant Cell, a premier research publication in plant science.

The research group’s technique is also featured in a paper published in a special issue of The Plant Journal, highlighting new developments in high resolution measurements in plant biology. The imaging technique can make maps of the locations of molecules in plant materials with resolution of 10 to 50 microns, less than a quarter the size of a human hair.

MALDI-MS has been in use in the medical and pharmaceutical fields for about the last decade, Lee said.

“In the medical field researchers were using this type of spectrometry to map proteins in human cancers and visualize the distribution of drugs through tissues. But in recent years the scientific community began to look at MALDI-MS as a possibility for mapping metabolites in plant material,” said Lee.

Traditional methods in gas chromatography and mass spectrometry told plant biologists the “what and how much” of plant metabolites, but not the “where.”

“Before these advances, in order to analyze plant material, biologists were forced to crush up tissue. We would lose spatial information, where these metabolites were located in different types of plant cells,” said Nikolau.

“The traditional methods provided qualitative and quantitative analysis, but it lost all localization of these small molecules,” said Lee. “With this technique we can see the distribution of these metabolites in the plant tissue at the single cell level.”

In Lee’s study of cottonseeds, done in partnership with a team of U.S. and German scientists, the technique showed a distribution of lipids that varies with tissue function. The knowledge could yield useful information about cottonseed, a crop valued as a possible source of biofuel and for its oil in the food industry.
“This information is really so new to scientists that we don’t know yet what it means. As a matter of fact, it challenges plant biologists at the moment to take hold of that data and integrate it into the way they do their science,” said Nikolau. “This data will change the future of how we do research.”

Lee said that though there was still much to learn about developing procedures using MALDI-MS to detect the tiny amounts of material in cells, he expects the use of the technique in plant science to gain wider use.

“Up until this point, this method has not really been recognized by plant scientists. But we were able to bring the technologies of analytical chemistry to the biological science problem of being able to map molecules at the single cell level. There is still a lot to learn about the process, but this technique is going to blossom very rapidly in the next few years.”

Nikolau believes the technology will be a key to thoroughly understanding plant biosynthesis, and in turn alternative energy production.

“This is really about the sustainability of our chemical world,” he said. “When you’re talking about chemical energy, you’re talking about carbon. Historically, over the last 100 years, it’s been carbon from petroleum. If you’re going to make biorenewable chemicals, the carbon comes in through photosynthesis, through plants. That process happens in discrete compartments within the organism, within individual cells. Science needs to know that highly detailed spatial information to take full advantage of it.”

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

The Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. The Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

Laura Millsaps | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>