Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique could help solve mystery of vanishing bees

22.03.2011
Ecologists have developed a better way of rearing bee larvae in the laboratory that could help discover why honey bee populations worldwide are declining. The technique, together with details of how statistics adapted from other areas of ecology can aid bee research, is published this week in the British Ecological Society's journal Methods in Ecology and Evolution.

Human food security depends on bees because they pollinate so many of our crop plants. As a result, worldwide declines in both honey bee colonies and solitary bees are causing widespread concern. But faced with declines that seem due to the combination of several factors, including diseases, agricultural chemicals and loss of habitat, researchers urgently need better ways of studying bees in the laboratory.

Now, a team of ecologists from the University of Würzburg, Germany has devised a better way of rearing honey bee larvae in the laboratory that should make it easier to study the causes of their decline.

The current method of rearing bees in the laboratory has major drawbacks. It involves a process known as “grafting”, where the tiny first instar bee larvae around 1mm long are collected using feathers, brushes or needles. As well as being time consuming and demanding considerable skill, the mechanical stress involved in handling causes mortality among the tiny larvae.

To avoid handling the larvae, the researchers allowed honey bee queens to lay eggs directly into an artificial plastic honeycomb about the size of a cigar box. The plastic honeycomb is widely used by professional honey bee queen breeders, and by using in the laboratory the team found rearing bee larvae much easier and more successful.

According to lead author and keen bee-keeper Harmen Hendriksma: “The artificial comb has a hexagonal pattern with 110 holes the size of wax cells. The queen lays her eggs directly into these small plastic cells. Because the back of each cell has a small plastic cup, we can collect the larvae without handling them.”

Before starting his PhD in 2008, Hendriksma spent four years working with a new Dutch company producing honey for medical uses. Seeing it used by queen breeders, he decided to try out the plastic honeycomb in the laboratory.

“Like many people I am a bit lazy and wanted to find a quicker, easier way of rearing honey bees in the laboratory. When I tried using the plastic honeycomb system I found it was just perfect,” he says.

Hendriksma and his colleagues found that when using the plastic honeycomb, almost all (97%) larvae survived. And because it is straightforward and simple to use, researchers were able to collect more than 1,000 larvae in 90 minutes.

By introducing a robust, standardised way of rearing larvae the technique should also help improve the quality of bee research because the results of experiments conducted in different laboratories will be more directly comparable.

The study also shows that applying statistical approaches used in other areas of ecological science can help bee researchers to better analyse their results.

Says Hendriksma: “Bee research is like an arms race, where researchers try and keep up with monitoring emerging new risks to bees. Because so many factors – such as environmental pollution, new agricultural pesticides, bee diseases, changing habitats and bees' genes – may be playing a part in the loss of our bees we need better ways of analysing our results.”

The study was funded by the German ministry for education and research (BMBF, Berlin).

Harmen Pieter Hendriksma, Stephan Härtel and Ingolf Steffan-Dewenter (2011), 'Honey bee risk assessment: New approaches for in vitro larvae rearing and data analyses', doi: 10.1111/j.2041-210X.2011.00099.x, is published in Methods in Ecology and Evolution on Tuesday 22 March 2011.

Notes for editors
1. For further information and photographs please contact Harmen Hendriksma, University of Würzburg, tel: +49 (0)931 31-82385, mob: + 49 (0)15159 996927, email: harmen-pieter.hendriksma@uni-wuerzburg.de

2. Copies of the paper are available from Ben Norman, Wiley-Blackwell, tel: +44 (0)1243 770375, email: lifesciencenews@wiley.com or Gunnar Bartsch, Press Officer, University of Würzburg, tel: +49 (0)931 31-82172, email: bartsch@zv.uni-wuerzburg.de

3. Methods in Ecology and Evolution is published by Wiley-Blackwell for the British Ecological Society. Contents lists are available at www.methodsinecologyandevolution.org

4. The British Ecological Society is a learned society, a registered charity and a company limited by guarantee. Established in 1913 by academics to promote and foster the study of ecology in its widest sense, the Society has 4,000 members in the UK and abroad. Further information is available at www.britishecologicalsociety.org

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>