Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique could help solve mystery of vanishing bees

22.03.2011
Ecologists have developed a better way of rearing bee larvae in the laboratory that could help discover why honey bee populations worldwide are declining. The technique, together with details of how statistics adapted from other areas of ecology can aid bee research, is published this week in the British Ecological Society's journal Methods in Ecology and Evolution.

Human food security depends on bees because they pollinate so many of our crop plants. As a result, worldwide declines in both honey bee colonies and solitary bees are causing widespread concern. But faced with declines that seem due to the combination of several factors, including diseases, agricultural chemicals and loss of habitat, researchers urgently need better ways of studying bees in the laboratory.

Now, a team of ecologists from the University of Würzburg, Germany has devised a better way of rearing honey bee larvae in the laboratory that should make it easier to study the causes of their decline.

The current method of rearing bees in the laboratory has major drawbacks. It involves a process known as “grafting”, where the tiny first instar bee larvae around 1mm long are collected using feathers, brushes or needles. As well as being time consuming and demanding considerable skill, the mechanical stress involved in handling causes mortality among the tiny larvae.

To avoid handling the larvae, the researchers allowed honey bee queens to lay eggs directly into an artificial plastic honeycomb about the size of a cigar box. The plastic honeycomb is widely used by professional honey bee queen breeders, and by using in the laboratory the team found rearing bee larvae much easier and more successful.

According to lead author and keen bee-keeper Harmen Hendriksma: “The artificial comb has a hexagonal pattern with 110 holes the size of wax cells. The queen lays her eggs directly into these small plastic cells. Because the back of each cell has a small plastic cup, we can collect the larvae without handling them.”

Before starting his PhD in 2008, Hendriksma spent four years working with a new Dutch company producing honey for medical uses. Seeing it used by queen breeders, he decided to try out the plastic honeycomb in the laboratory.

“Like many people I am a bit lazy and wanted to find a quicker, easier way of rearing honey bees in the laboratory. When I tried using the plastic honeycomb system I found it was just perfect,” he says.

Hendriksma and his colleagues found that when using the plastic honeycomb, almost all (97%) larvae survived. And because it is straightforward and simple to use, researchers were able to collect more than 1,000 larvae in 90 minutes.

By introducing a robust, standardised way of rearing larvae the technique should also help improve the quality of bee research because the results of experiments conducted in different laboratories will be more directly comparable.

The study also shows that applying statistical approaches used in other areas of ecological science can help bee researchers to better analyse their results.

Says Hendriksma: “Bee research is like an arms race, where researchers try and keep up with monitoring emerging new risks to bees. Because so many factors – such as environmental pollution, new agricultural pesticides, bee diseases, changing habitats and bees' genes – may be playing a part in the loss of our bees we need better ways of analysing our results.”

The study was funded by the German ministry for education and research (BMBF, Berlin).

Harmen Pieter Hendriksma, Stephan Härtel and Ingolf Steffan-Dewenter (2011), 'Honey bee risk assessment: New approaches for in vitro larvae rearing and data analyses', doi: 10.1111/j.2041-210X.2011.00099.x, is published in Methods in Ecology and Evolution on Tuesday 22 March 2011.

Notes for editors
1. For further information and photographs please contact Harmen Hendriksma, University of Würzburg, tel: +49 (0)931 31-82385, mob: + 49 (0)15159 996927, email: harmen-pieter.hendriksma@uni-wuerzburg.de

2. Copies of the paper are available from Ben Norman, Wiley-Blackwell, tel: +44 (0)1243 770375, email: lifesciencenews@wiley.com or Gunnar Bartsch, Press Officer, University of Würzburg, tel: +49 (0)931 31-82172, email: bartsch@zv.uni-wuerzburg.de

3. Methods in Ecology and Evolution is published by Wiley-Blackwell for the British Ecological Society. Contents lists are available at www.methodsinecologyandevolution.org

4. The British Ecological Society is a learned society, a registered charity and a company limited by guarantee. Established in 1913 by academics to promote and foster the study of ecology in its widest sense, the Society has 4,000 members in the UK and abroad. Further information is available at www.britishecologicalsociety.org

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>