Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique could help solve mystery of vanishing bees

22.03.2011
Ecologists have developed a better way of rearing bee larvae in the laboratory that could help discover why honey bee populations worldwide are declining. The technique, together with details of how statistics adapted from other areas of ecology can aid bee research, is published this week in the British Ecological Society's journal Methods in Ecology and Evolution.

Human food security depends on bees because they pollinate so many of our crop plants. As a result, worldwide declines in both honey bee colonies and solitary bees are causing widespread concern. But faced with declines that seem due to the combination of several factors, including diseases, agricultural chemicals and loss of habitat, researchers urgently need better ways of studying bees in the laboratory.

Now, a team of ecologists from the University of Würzburg, Germany has devised a better way of rearing honey bee larvae in the laboratory that should make it easier to study the causes of their decline.

The current method of rearing bees in the laboratory has major drawbacks. It involves a process known as “grafting”, where the tiny first instar bee larvae around 1mm long are collected using feathers, brushes or needles. As well as being time consuming and demanding considerable skill, the mechanical stress involved in handling causes mortality among the tiny larvae.

To avoid handling the larvae, the researchers allowed honey bee queens to lay eggs directly into an artificial plastic honeycomb about the size of a cigar box. The plastic honeycomb is widely used by professional honey bee queen breeders, and by using in the laboratory the team found rearing bee larvae much easier and more successful.

According to lead author and keen bee-keeper Harmen Hendriksma: “The artificial comb has a hexagonal pattern with 110 holes the size of wax cells. The queen lays her eggs directly into these small plastic cells. Because the back of each cell has a small plastic cup, we can collect the larvae without handling them.”

Before starting his PhD in 2008, Hendriksma spent four years working with a new Dutch company producing honey for medical uses. Seeing it used by queen breeders, he decided to try out the plastic honeycomb in the laboratory.

“Like many people I am a bit lazy and wanted to find a quicker, easier way of rearing honey bees in the laboratory. When I tried using the plastic honeycomb system I found it was just perfect,” he says.

Hendriksma and his colleagues found that when using the plastic honeycomb, almost all (97%) larvae survived. And because it is straightforward and simple to use, researchers were able to collect more than 1,000 larvae in 90 minutes.

By introducing a robust, standardised way of rearing larvae the technique should also help improve the quality of bee research because the results of experiments conducted in different laboratories will be more directly comparable.

The study also shows that applying statistical approaches used in other areas of ecological science can help bee researchers to better analyse their results.

Says Hendriksma: “Bee research is like an arms race, where researchers try and keep up with monitoring emerging new risks to bees. Because so many factors – such as environmental pollution, new agricultural pesticides, bee diseases, changing habitats and bees' genes – may be playing a part in the loss of our bees we need better ways of analysing our results.”

The study was funded by the German ministry for education and research (BMBF, Berlin).

Harmen Pieter Hendriksma, Stephan Härtel and Ingolf Steffan-Dewenter (2011), 'Honey bee risk assessment: New approaches for in vitro larvae rearing and data analyses', doi: 10.1111/j.2041-210X.2011.00099.x, is published in Methods in Ecology and Evolution on Tuesday 22 March 2011.

Notes for editors
1. For further information and photographs please contact Harmen Hendriksma, University of Würzburg, tel: +49 (0)931 31-82385, mob: + 49 (0)15159 996927, email: harmen-pieter.hendriksma@uni-wuerzburg.de

2. Copies of the paper are available from Ben Norman, Wiley-Blackwell, tel: +44 (0)1243 770375, email: lifesciencenews@wiley.com or Gunnar Bartsch, Press Officer, University of Würzburg, tel: +49 (0)931 31-82172, email: bartsch@zv.uni-wuerzburg.de

3. Methods in Ecology and Evolution is published by Wiley-Blackwell for the British Ecological Society. Contents lists are available at www.methodsinecologyandevolution.org

4. The British Ecological Society is a learned society, a registered charity and a company limited by guarantee. Established in 1913 by academics to promote and foster the study of ecology in its widest sense, the Society has 4,000 members in the UK and abroad. Further information is available at www.britishecologicalsociety.org

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>