Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique to Probe Hidden Dynamics of Molecular Biology

05.03.2010
Funded by a $1 million grant from the W.M. Keck Foundation, University of Chicago scientists are aiming to develop a reliable method for determining how biological processes emerge from molecular interactions. The method may permit them to “rewire” the regulatory circuitry of insulin-secreting pancreatic beta cells, which play a major role in type-2 diabetes.

“Despite the enormous amount of study directed at diabetes, there’s really very little understanding of the collective mechanisms that govern or regulate insulin secretion,” said project director Aaron Dinner, Associate Professor in Chemistry.

A second goal: to control cell behavior and function more generally, which may ultimately culminate in other applications, including the bioremediation of environmental problems. Collaborating with Dinner on the project are Louis Philipson, PhD’82, MD ’86, Professor in Medicine and Director of the University of Chicago Kovler Diabetes Center; and chemistry professors Rustem Ismagilov and Norbert Scherer, SB’82.

The four scientists share an interest in the collective behavior of cells that emerges from a complex ensemble of atoms and molecules working in concert at different scales of time and space. “In a living system you have this hierarchy of coupled time and length scales,” Dinner said. “How is it that all of these different dynamics at one time and length scale get coupled to dynamics at another scale?”

The collaborators have worked together previously in various pairs. “It seemed natural to put those different pair-wise interactions together,” Dinner said.

Philipson and Scherer, for example, worked together to pioneer a microscopy method for imaging activity inside beta cells that led up to insulin secretion under different conditions. Ismagilov and Philipson collaborated on a means of efficiently measuring and analyzing beta-cell secretions. And Dinner and Scherer have analyzed the dynamics of an oddly behaving RNA molecule.

Non-intuitive molecular behavior

Dinner and Scherer’s study revealed some non-intuitive, hidden dynamics. They experimented with the molecule in solution, expecting it to move slowly, somewhat like a person walking around in a swimming pool. But after changing the chemical solution they found that the molecule behaved in a non-intuitive way.

“It was as though something was driving it,” Dinner said.

The chemical pulses they had introduced into the molecule’s watery environment were the driving force of the dynamic oscillations they observed. In their next step, they applied the process to a bacterium, coupling cycles inside the cell that would ordinarily operate on different time scales. The scientists then analyzed the bacterium’s response to the chemical pulses for insights into its internal properties.

The similar use of optical, magnetic and spectroscopic techniques is a standard means of probing molecular dynamics. Based on their RNA research, Scherer and Dinner realized that a chemical version of the technique might provide a whole new way of studying cellular dynamics. They call their new technique “chemical perturbation spectroscopy.”

“We measure everything at a single-cell level so we can quantify in detail what each single cell is doing as it evolves through multiple generations,” Scherer said. “These studies are allowing us to lay the groundwork for how to measure perturbations that we apply to cells, and how to do the analysis. Essentially, none of this has been done before, so we have to invent the approach.”

Once the details are worked out, Scherer said, “We expect to be able to target certain cell functions and, let’s say, increase insulin output from the beta cells.”

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>