Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique to Probe Hidden Dynamics of Molecular Biology

05.03.2010
Funded by a $1 million grant from the W.M. Keck Foundation, University of Chicago scientists are aiming to develop a reliable method for determining how biological processes emerge from molecular interactions. The method may permit them to “rewire” the regulatory circuitry of insulin-secreting pancreatic beta cells, which play a major role in type-2 diabetes.

“Despite the enormous amount of study directed at diabetes, there’s really very little understanding of the collective mechanisms that govern or regulate insulin secretion,” said project director Aaron Dinner, Associate Professor in Chemistry.

A second goal: to control cell behavior and function more generally, which may ultimately culminate in other applications, including the bioremediation of environmental problems. Collaborating with Dinner on the project are Louis Philipson, PhD’82, MD ’86, Professor in Medicine and Director of the University of Chicago Kovler Diabetes Center; and chemistry professors Rustem Ismagilov and Norbert Scherer, SB’82.

The four scientists share an interest in the collective behavior of cells that emerges from a complex ensemble of atoms and molecules working in concert at different scales of time and space. “In a living system you have this hierarchy of coupled time and length scales,” Dinner said. “How is it that all of these different dynamics at one time and length scale get coupled to dynamics at another scale?”

The collaborators have worked together previously in various pairs. “It seemed natural to put those different pair-wise interactions together,” Dinner said.

Philipson and Scherer, for example, worked together to pioneer a microscopy method for imaging activity inside beta cells that led up to insulin secretion under different conditions. Ismagilov and Philipson collaborated on a means of efficiently measuring and analyzing beta-cell secretions. And Dinner and Scherer have analyzed the dynamics of an oddly behaving RNA molecule.

Non-intuitive molecular behavior

Dinner and Scherer’s study revealed some non-intuitive, hidden dynamics. They experimented with the molecule in solution, expecting it to move slowly, somewhat like a person walking around in a swimming pool. But after changing the chemical solution they found that the molecule behaved in a non-intuitive way.

“It was as though something was driving it,” Dinner said.

The chemical pulses they had introduced into the molecule’s watery environment were the driving force of the dynamic oscillations they observed. In their next step, they applied the process to a bacterium, coupling cycles inside the cell that would ordinarily operate on different time scales. The scientists then analyzed the bacterium’s response to the chemical pulses for insights into its internal properties.

The similar use of optical, magnetic and spectroscopic techniques is a standard means of probing molecular dynamics. Based on their RNA research, Scherer and Dinner realized that a chemical version of the technique might provide a whole new way of studying cellular dynamics. They call their new technique “chemical perturbation spectroscopy.”

“We measure everything at a single-cell level so we can quantify in detail what each single cell is doing as it evolves through multiple generations,” Scherer said. “These studies are allowing us to lay the groundwork for how to measure perturbations that we apply to cells, and how to do the analysis. Essentially, none of this has been done before, so we have to invent the approach.”

Once the details are worked out, Scherer said, “We expect to be able to target certain cell functions and, let’s say, increase insulin output from the beta cells.”

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>