Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique permits development of enzyme tool kit

11.05.2010
An Arizona State University graduate student, Jinglin Fu, in collaboration with Biodesign Institute researchers Neal Woodbury and Stephen Albert Johnston, has pioneered a technique that improves on scientists’ ability to harness and modulate enzyme activity.

The new approach, reported in the Journal of the American Chemical Society (published online on Apr. 21st, 2010) , could have wide applicability for designing a range of industrial catalysts, health care diagnostics and therapies centered on understanding the control of enzymatic activity.

Enzymes, key catalysts that speed up the reactions inside every cell, are critical for life. As Neal Woodbury, chief scientist the Biodesign Institute at Arizona State University notes, “all the processes that happen inside of your body, essentially without exception, are run by enzymes.” Enzymes are also a prized tool in biomedical research, aiding the development of diagnostic tests and therapeutics for a range of human diseases.

But studying the role of enzymes can be tricky. One approach has been to use a specialized platform known as a microarray—where glass slides are deposited with 10,000 protein fragments, called peptides, that are screened for their ability to react with specific enzymes and alter their activity. “On the microarray, you can screen thousands of molecules at the same time,” Fu says, allowing the simultaneous monitoring of the peptide-enzyme binding and the change in enzyme activity at each spot on the array.

But there is a problem with this approach, that has so far hampered enzyme research. “When you try to monitor the chemical reaction that the enzyme catalyzes in the microarray, the molecule generated by the enzyme reaction quickly diffuses away, causing serious cross-contamination between spots on the array,” Fu explains. To solve this problem, Fu applied polyvinyl alcohol (PVA)—a thick, viscous and clear polymer— to the microarray slide to limit the diffusion of molecules and hold the reactions in place, preventing contamination.

In the current study, Fu’s team was able to observe the effects that peptides had on the activity of three broad classes of enzymes. In some cases, peptides blocked the activity of an enzyme but in others, peptides acted to alter the whole structure of the enzyme—often in unanticipated ways—allowing it to function differently.

“What Jinglin has invented,” Woodbury stresses, “is a way of finding a peptide that will allow us to both put an enzyme in a particular place and modulate its activity. It allows us to begin to group different enzymes according to function.” In addition to possible biomedical applications, the enzyme tool kit made possible through the group’s research could be applied to modulating enzymes for a variety of industrial purposes, for new detergents or pharmaceuticals. Further, the strategy is not limited to peptides. It can theoretically be applied to virtually any small molecule suitable for an array, making the technique extremely versatile.

Written by Richard Harth
Biodesign Institute Science Writer
richard.harth@asu.edu

Richard Harth | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>