Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique could make cell-based immune therapies for cancer safer and more effective

17.12.2012
A team led by Michel Sadelain, MD, PhD, Director of the Center for Cell Engineering at Memorial Sloan-Kettering Cancer Center, has shown for the first time the effectiveness of a new technique that could allow the development of more-specific, cell-based immune therapies for cancer. Their findings were reported online today in Nature Biotechnology.

Immunotherapies — which make use of patients' own immune cells that have been augmented in the laboratory — have shown some early success in the treatment of blood cancers including certain types of leukemia.

For most cancers, however, cell-based therapies have been harder to develop, in large part because it has been difficult for investigators to train immune cells to specifically attack cancer cells without damaging normal, healthy cells in the body.

The treatment approach, known as adoptive cell transfer (ACT), involves engineering an immune cell called a T cell. In the ACT process, T cells are removed from a patient and a gene is added to allow the T cells to recognize a certain antigen on the surface of a cancer cell. The enhanced cells are grown in the laboratory and then infused back into the patient to seek out and attack cancer cells.

"We are getting better at working with these T cells and enhancing them so that we can get a powerful immunological response against cancer," Dr. Sadelain says. "The dilemma now is that we are concerned with limiting these responses and making them as targeted as possible to avoid potentially harmful side effects."

Cancer cells overproduce certain antigens, which can help T cells to recognize them, but those same antigens are often found in lower levels on healthy cells. "There are very few antigens, if any, that are found only on cancer cells," Dr. Sadelain explains.

"Now we are bringing in a completely new concept," he adds. "If there is no single unique antigen that is found on the surface of the cancer cell we want to target, we instead create T cells that recognize two different antigens found on the tumor cell — a signature that will be unique to that type of cancer — and only attack cells with both antigens, sparing the normal cells that express either antigen alone."

The new technique makes use of receptors known as chimeric antigen receptors (CARs), which allow T cells to target antigens on the surface of a tumor cell, coupled with another type of receptor called a chimeric costimulatory receptor (CCR), by which the T cells can recognize a second antigen.

The CAR and the CCR work together through a process known as balanced signaling, in which the presence of either antigen on its own is not enough to trigger the immune response. Only tumor cells that carry both antigens will be targeted.

In the Nature Biotechnology study, the team created T cells that carried a CAR for an antigen called PSMA and a CCR for an antigen called PSCA. Both PSMA and PSCA are found on prostate cancer cells. The investigators then generated mouse models of prostate cancer and infused the mice with the engineered cells. They found that the T cells attacked only tumors that carried antigens for both PSMA and PSCA.

"We are the first to test this concept and show that it works," Dr. Sadelain concludes. "We plan to develop clinical trials based on this approach, although we have not yet decided whether the first study will be a trial for prostate cancer or for a different type of cancer using two other antigens. Ultimately, our goal is to create targeted immunotherapies that are both potent and safe for patients."

In addition to members of Dr. Sadelain's laboratory, coauthors on the study included two researchers from TU Dresden in Germany.

This work was supported by philanthropic funds provided by the Mr. William H. and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research, the Experimental Therapeutics Center of Memorial Sloan-Kettering Cancer Center, the Major Family Fund for Cancer Research at Memorial Sloan-Kettering, Mr. and Mrs. Joel S. Mallah, and Mr. Lewis Sanders.

Andrea Molinatti | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>