Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique could make cell-based immune therapies for cancer safer and more effective

17.12.2012
A team led by Michel Sadelain, MD, PhD, Director of the Center for Cell Engineering at Memorial Sloan-Kettering Cancer Center, has shown for the first time the effectiveness of a new technique that could allow the development of more-specific, cell-based immune therapies for cancer. Their findings were reported online today in Nature Biotechnology.

Immunotherapies — which make use of patients' own immune cells that have been augmented in the laboratory — have shown some early success in the treatment of blood cancers including certain types of leukemia.

For most cancers, however, cell-based therapies have been harder to develop, in large part because it has been difficult for investigators to train immune cells to specifically attack cancer cells without damaging normal, healthy cells in the body.

The treatment approach, known as adoptive cell transfer (ACT), involves engineering an immune cell called a T cell. In the ACT process, T cells are removed from a patient and a gene is added to allow the T cells to recognize a certain antigen on the surface of a cancer cell. The enhanced cells are grown in the laboratory and then infused back into the patient to seek out and attack cancer cells.

"We are getting better at working with these T cells and enhancing them so that we can get a powerful immunological response against cancer," Dr. Sadelain says. "The dilemma now is that we are concerned with limiting these responses and making them as targeted as possible to avoid potentially harmful side effects."

Cancer cells overproduce certain antigens, which can help T cells to recognize them, but those same antigens are often found in lower levels on healthy cells. "There are very few antigens, if any, that are found only on cancer cells," Dr. Sadelain explains.

"Now we are bringing in a completely new concept," he adds. "If there is no single unique antigen that is found on the surface of the cancer cell we want to target, we instead create T cells that recognize two different antigens found on the tumor cell — a signature that will be unique to that type of cancer — and only attack cells with both antigens, sparing the normal cells that express either antigen alone."

The new technique makes use of receptors known as chimeric antigen receptors (CARs), which allow T cells to target antigens on the surface of a tumor cell, coupled with another type of receptor called a chimeric costimulatory receptor (CCR), by which the T cells can recognize a second antigen.

The CAR and the CCR work together through a process known as balanced signaling, in which the presence of either antigen on its own is not enough to trigger the immune response. Only tumor cells that carry both antigens will be targeted.

In the Nature Biotechnology study, the team created T cells that carried a CAR for an antigen called PSMA and a CCR for an antigen called PSCA. Both PSMA and PSCA are found on prostate cancer cells. The investigators then generated mouse models of prostate cancer and infused the mice with the engineered cells. They found that the T cells attacked only tumors that carried antigens for both PSMA and PSCA.

"We are the first to test this concept and show that it works," Dr. Sadelain concludes. "We plan to develop clinical trials based on this approach, although we have not yet decided whether the first study will be a trial for prostate cancer or for a different type of cancer using two other antigens. Ultimately, our goal is to create targeted immunotherapies that are both potent and safe for patients."

In addition to members of Dr. Sadelain's laboratory, coauthors on the study included two researchers from TU Dresden in Germany.

This work was supported by philanthropic funds provided by the Mr. William H. and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research, the Experimental Therapeutics Center of Memorial Sloan-Kettering Cancer Center, the Major Family Fund for Cancer Research at Memorial Sloan-Kettering, Mr. and Mrs. Joel S. Mallah, and Mr. Lewis Sanders.

Andrea Molinatti | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>