Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New technique enables faster genetic diagnosis for hereditary diseases

VIB researchers connected to the University of Antwerp have developed a new method that enables them to track down the cause of hereditary diseases more quickly and efficiently.

By means of this technique, genetic tests that take a long time today - such as screening for hereditary forms of breast cancer - can be carried out much more rapidly. This finding creates new perspectives for tests that are currently expensive and difficult to perform.

Genetic screening today
Genetic screening is currently performed when, for example, several persons in a family contract the same disease. A member of the family may wonder whether it is in fact an hereditary disease, and, if so, whether he or she is a carrier and runs the risk of getting the disease or of transmitting it to his or her children. Following genetic advice, screening can be performed: whereby scientists investigate whether there is indeed a defect in the DNA of the patients in the family (provided they cooperate in the testing) or of the family member who is inquiring. On the basis of this screening, medical practitioners can provide advice regarding prevention or regarding prenatal diagnosis when the person desires to have children.

If the gene that can cause the disease is very large, or if there are several genes that can possibly lead to the disease, diagnostic centers must conduct a lot of labor-intensive studies. This results in long waiting times, with the consequences that the person inquiring remains in a state of uncertainty for a longer time, that any preventive treatment is delayed, that a desire to have children is postponed, or that children are born with a defective gene.

A new technology
Now, VIB researchers Dirk Goossens and his colleagues in Jurgen Del-Favero’s research group have developed a new method, with which several pieces of DNA can be examined simultaneously, instead of one after the other. They have succeeded in joining together two powerful existing techniques - multiplex PCR and massive parallel sequencing - making it possible to screen all of a person’s relevant hereditary matter at one time. Use of this parallel technology offers an affordable solution for molecular diagnostics of a large number of (sometimes commonly occurring) disorders.
A much quicker diagnosis
With this new technology, the molecular diagnosis of genetic diseases - such as breast cancer, cystic fibrosis, and hereditary deafness - will be carried out much faster and more cost-effectively. It takes 3 to 6 months to receive a result with the techniques that are currently in use. By comparison, the new method produces a result within only a few weeks. Moreover, not only are these tests run much more quickly, they are also very sensitive and provide a more detailed result.

Sooike Stoops | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>