Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique enables assessment of drought performance

12.11.2008
Measurement of chlorophyll fluorescence is an effective way of determining how well plants can cope with low-water conditions. The technique described in the open access journal Plant Methods, published by BioMed Central, allows a quantitative and precise determination of viability in intact, drought-stressed plants.

Due to the increasing demands of industrial, municipal and agricultural consumption on dwindling water supplies, botanists are increasingly engaged in efforts to cultivate plants that have low water requirements.

Barry Pogson led a team of researchers from the Australian National University who investigated whether chlorophyll fluorescence could be used in the assessment of plant water status during such studies. He said “We found that plants’ viability during increasing water deficit could be measured and quantified by measuring changes to the maximum efficiency of photosystem II (Fv/Fm), and that this was easily measurable by chlorophyll fluorometry.”

Other methods of assessing plants’ performance under water deficit have serious drawbacks. Methods that involve detaching parts of the plant are destructive and survival studies rely on qualitative observation of physical symptoms of water deficit stress such as turgor loss, chlorosis, and other qualities that can vary greatly between specimens and are also sensitive to experimental conditions. Chlorophyll fluorescence is non-invasive and minimal technical expertise and a basic understanding of fluorometry. Pogson said “By correlating the decline in the Fv/Fm parameter to loss of viability, our procedure allows the monitoring of survival under water deficit conditions, namely defining a threshold of 33% of well-watered Fv/Fm values.”

This procedure may complement existing methods of evaluating drought performance while also increasing the number of tools available for assessment of other plant stresses.

Graeme Baldwin | alfa
Further information:
http://www.plantmethods.com/home/
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>