Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique advances bioprinting of cells

04.07.2011
Ever since an ordinary office inkjet printer had its ink cartridges swapped out for a cargo of cells about 10 years ago and sprayed out cell-packed droplets to create living tissue, scientists and engineers have never looked at office equipment in quite the same way.

They dream of using a specialized bio-inkjet printer to grow new body parts for organ transplants or tissues for making regenerative medicine repairs to ailing bodies. Both these new therapies begin with a carefully printed mass of embryonic stem cells. And now there's progress on getting that initial mass of stem cells printed.

By extending his pioneering acoustical work that applied sound waves to generate droplets from fluids, Dr. Utkan Demirci and his team at Harvard Medical School's (Brigham and Women's Hospital) Bio-Acoustic Mems in Medicine Laboratory report encouraging preliminary results at an early and crucial point in a stem cell's career known as embroid body formation. Their research results appear in the journal Biomicrofluids, published by the American Institute of Physics.

Getting the embroid body formed correctly and without mechanical trauma is key to preserving the stem cells' astounding ability to develop into any desired tissue. Their new automated bioprinting approach appears to do this better than manual pipetting in the "hang-drop" method traditionally used.

Notes Dr. Demirci: "To have the capability to manipulate cells in a high-throughput environment reliably and repeatedly, whether it is a single cell or tens of thousands of cells in a single droplet, has the potential to enable potential solutions to many problems in medicine and engineering."

Three research results stand out:

Enhanced uniformity of size and ability to control droplet size. These are key variables because they determine how the embroid bodies will grow.
Achieving a scalable system that can print one cell or tens of thousands per droplet—a level of precise manipulation not previously available.

Faster droplet formation. The new system delivers 160 droplets/seconds, versus 10 minutes for the hang-drop method.

The next step involves assessing the two methods to compare their effects on cell function. Says Dr. Demirci: "We are eager to take it to the next level."

The article, "Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation," by Feng Xu, Banupriya Sridharan, SuiQi Wang, Umut Gurkan, Brian Syverud, and Utkan Demirci, appears in the journal Biomicrofluidics.

About AIP

The American Institute of Physics is an organization of 10 physical science societies, representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in physics. AIP pursues innovation in electronic publishing of scholarly journals and offers full-solution publishing services for its Member Societies. AIP publishes 13 journals; two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. AIP also delivers valuable resources and expertise in education and student services, science communication, government relations, career services for science and engineering professionals, statistical research, industrial outreach, and the history of physics and other sciences.

Charles E. Blue | EurekAlert!
Further information:
http://www.aip.org

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>