Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How “Teamwork” between Egg and Sperm Works

12.08.2013
Heidelberg researchers detect little-known protein in vertebrate fertilisation process

Researchers from Heidelberg have decoded a previously unknown molecular mechanism in the fertilisation process of vertebrates. The team of scientists at the Center for Molecular Biology of Heidelberg University identified a specific protein in frog egg extracts that the male basal bodies need, but that is produced only by the reproductive cells of the female.

This “teamwork” between the egg and sperm is what makes embryo development possible. The results of the research were published in “The Journal of Cell Biology”.

Several years ago Prof. Dr. Oliver Gruß and his colleagues used sensitive mass spectrometry to begin looking for protein materials that were newly synthesised during meiosis, as new egg cells were formed, thus making cell division efficient. In the process, they identified a previously little-known protein.

The so-called synovial sarcoma X breakpoint protein (SSX2IP) is indeed formed during meiosis, but not required for it. “At first we were at a loss to explain the function of SSX2IP”, says Dr. Felix Bärenz, a member of Oliver Gruß’ working group.

The breakthrough came when the researchers went one step further, simulating fertilisation of the frog’s egg in the test tube. It was then they discovered that the SSX2IP produced after fertilisation and penetration of the egg by the sperm reanimated the basal bodies of the sperm.

Because the egg loses its basal bodies as it matures, the reactivation of the male’s basal bodies is vital for the embryo’s development. They, in turn, build the embryo’s division apparatus – the mitotic spindles – without whose precise function continued cell division and successful embryo development would be impossible.

“In a cell culture, we were also able to prove that SSX2IP plays a similar role in human cells”, explains Prof. Gruß. Without the human SSX2IP protein, obvious errors occurred in the function of division apparatus. “It’s therefore quite conceivable that defects in SSX2IP synthesis during human egg maturation could lead to infertility or embryonic deformities”, surmises the Heidelberg biochemist.

Original publication:
F. Bärenz, D. Inoue, H. Yokoyama, J. Tegha-Dunghu, S. Freiss, S. Draeger, D. Mayilo, I. Cado, S. Merker, M. Klinger, B. Hoeckendorf, S. Pilz, K. Hupfeld, H. Steinbeisser, H. Lorenz, T. Ruppert, J. Wittbrodt, O. Gruß: The centriolar satellite protein SSX2IP promotes centrosome maturation. The Journal of Cell Biology 1 (202), 1 July 2013, p. 81-95, doi: 10.1083/jcb.201302122
Contact:
Prof. Dr. Oliver Gruß
Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)
DKFZ-ZMBH Alliance
phone: +49 6221 54-6815
o.gruss@zmbh.uni-heidelberg.de
Communications and Marketing
Press Office
phone: +49 6221 542311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>