Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team pinpoints amino acid variation in immune response gene linked with ulcerative colitis

19.12.2011
The association between the inflammatory bowel disease ulcerative colitis and a gene that makes certain cell surface proteins has been pinpointed to a variant amino acid in a crucial binding site that profoundly influences immune response to antigens, including gut bacteria, reports a team of researchers at the University of Pittsburgh, Cleveland Clinic, Carnegie Mellon University and Harvard Medical School. They published the findings today in the online version of Genes & Immunity.

Variations in genes that regulate immune responses in a region of chromosome 6 have long been linked with susceptibility for many infectious and chronic inflammatory conditions, including ulcerative colitis, said Richard H. Duerr, M.D., professor of medicine, Pitt School of Medicine, co-director and scientific director, UPMC Inflammatory Bowel Disease Center, and the corresponding author of the study. Ulcerative colitis is characterized by recurrent inflammation of the large intestine that results in diarrhea mixed with blood and abdominal pain.

"We tested more than 10,000 points, called single nucleotide polymorphisms, or SNPs, in the gene sequence in this chromosomal region, and we also tested amino acid variations in human leukocyte antigen (HLA) proteins that were deduced from the SNPs to identify those most important for ulcerative colitis," Dr. Duerr said. "Refining the gene association signals in this region enabled us to better understand the underlying mechanisms of the disease."

Using sophisticated association techniques, the authors confirmed that an HLA gene called DRB1, which codes for a protein that is involved in the immune response and routinely tested in tissue matching for organ transplantation, was uniquely related to ulcerative colitis. Variation, or polymorphism, in that gene altered which amino acid was selected for the 11th position in the DRB1 protein – a key location because it is in a pocket of the so-called binding cleft where other proteins, such as antigens or markers of foreign cells, attach.

"This particular position probably plays a significant role in determining the human immune response to extracellular antigens," Dr. Duerr said. "It ties into theories that ulcerative colitis might result from an abnormal immune response to gastrointestinal bacterial antigens or might be an autoimmune disorder caused by an abnormal immune response to a self-antigen."

The researchers also looked for a similar relationship between that amino acid position and Crohn's disease, another chronic inflammatory bowel condition, but did not find a strong association. Still, variants in immune response genes on chromosome 6 likely contribute not only to ulcerative colitis and Crohn's disease, but also to other immune-mediated diseases such as rheumatoid arthritis and multiple sclerosis, added Jean-Paul Achkar, M.D., Department of Gastroenterology & Hepatology, Cleveland Clinic Digestive Disease Institute, an alum of the gastroenterology and hepatology training program at UPMC, and first author of the study.

In addition to Pitt School of Medicine and the Cleveland Clinic, the team included researchers from Pitt Graduate School of Public Health and Children's Hospital of Pittsburgh of UPMC; Harvard Medical School, the Broad Institute of Harvard and the Massachusetts Institute of Technology; the University Medical Center Utrecht, the Netherlands; and Carnegie Mellon University.

The project was funded by National Institutes of Health grants DK068112, AG030653, MH057881, DK062420 and DK076025; a Crohn's & Colitis Foundation of America Senior Research Award; U.S. Department of Defense Grant W81XWH-07-1-0619; and funds generously provided by Kenneth and Jennifer Rainin, Gerald and Nancy Goldberg, and Victor and Ellen Cohn.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see http://www.medschool.pitt.edu

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>