Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team pinpoints amino acid variation in immune response gene linked with ulcerative colitis

19.12.2011
The association between the inflammatory bowel disease ulcerative colitis and a gene that makes certain cell surface proteins has been pinpointed to a variant amino acid in a crucial binding site that profoundly influences immune response to antigens, including gut bacteria, reports a team of researchers at the University of Pittsburgh, Cleveland Clinic, Carnegie Mellon University and Harvard Medical School. They published the findings today in the online version of Genes & Immunity.

Variations in genes that regulate immune responses in a region of chromosome 6 have long been linked with susceptibility for many infectious and chronic inflammatory conditions, including ulcerative colitis, said Richard H. Duerr, M.D., professor of medicine, Pitt School of Medicine, co-director and scientific director, UPMC Inflammatory Bowel Disease Center, and the corresponding author of the study. Ulcerative colitis is characterized by recurrent inflammation of the large intestine that results in diarrhea mixed with blood and abdominal pain.

"We tested more than 10,000 points, called single nucleotide polymorphisms, or SNPs, in the gene sequence in this chromosomal region, and we also tested amino acid variations in human leukocyte antigen (HLA) proteins that were deduced from the SNPs to identify those most important for ulcerative colitis," Dr. Duerr said. "Refining the gene association signals in this region enabled us to better understand the underlying mechanisms of the disease."

Using sophisticated association techniques, the authors confirmed that an HLA gene called DRB1, which codes for a protein that is involved in the immune response and routinely tested in tissue matching for organ transplantation, was uniquely related to ulcerative colitis. Variation, or polymorphism, in that gene altered which amino acid was selected for the 11th position in the DRB1 protein – a key location because it is in a pocket of the so-called binding cleft where other proteins, such as antigens or markers of foreign cells, attach.

"This particular position probably plays a significant role in determining the human immune response to extracellular antigens," Dr. Duerr said. "It ties into theories that ulcerative colitis might result from an abnormal immune response to gastrointestinal bacterial antigens or might be an autoimmune disorder caused by an abnormal immune response to a self-antigen."

The researchers also looked for a similar relationship between that amino acid position and Crohn's disease, another chronic inflammatory bowel condition, but did not find a strong association. Still, variants in immune response genes on chromosome 6 likely contribute not only to ulcerative colitis and Crohn's disease, but also to other immune-mediated diseases such as rheumatoid arthritis and multiple sclerosis, added Jean-Paul Achkar, M.D., Department of Gastroenterology & Hepatology, Cleveland Clinic Digestive Disease Institute, an alum of the gastroenterology and hepatology training program at UPMC, and first author of the study.

In addition to Pitt School of Medicine and the Cleveland Clinic, the team included researchers from Pitt Graduate School of Public Health and Children's Hospital of Pittsburgh of UPMC; Harvard Medical School, the Broad Institute of Harvard and the Massachusetts Institute of Technology; the University Medical Center Utrecht, the Netherlands; and Carnegie Mellon University.

The project was funded by National Institutes of Health grants DK068112, AG030653, MH057881, DK062420 and DK076025; a Crohn's & Colitis Foundation of America Senior Research Award; U.S. Department of Defense Grant W81XWH-07-1-0619; and funds generously provided by Kenneth and Jennifer Rainin, Gerald and Nancy Goldberg, and Victor and Ellen Cohn.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see http://www.medschool.pitt.edu

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>