Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Team led by Scripps Research scientists discovers body's own molecular protection against arthritis

The results may lead to new approach to therapies for joint disease

An international team of scientists from The Scripps Research Institute in California and the National Research Institute for Child Health and Development in Japan has discovered that a natural molecule in the body counters the progression of osteoarthritis. The findings could one day lead to new therapies for some common diseases of aging.

The study was published in an advanced, online issue of the journal Genes & Development on May 13, 2010, and will be featured as the cover story of the June 1 print edition of the journal.

The molecule the team studied, microRNA 140 (miR-140), is part of a recently discovered category of genetic molecules—"microRNAs" or "non-coding RNAs" which do not code for proteins, yet often play a vital role in gene expression.

"This is the first report showing the critical role of a specific non-coding RNA in bone development," said Hiroshi Asahara, M.D., Ph.D., associate professor of molecular and experimental medicine at Scripps Research. "Moreover, surprisingly, we observed that microRNA 140 acts against arthritis progression. This is among the first evidence that non-coding RNA plays a key role in age-dependent diseases."

"This finding may lead to a new therapeutic strategy for osteoarthritis," said Shigeru Miyaki, senior research associate in the Asahara lab and first author of the paper with Tempei Sato of the National Research Institute for Child Health and Development, "as well as for conditions that share a similar mechanism, such as spinal disc degeneration."

Broad Impact

Even in comparison with other diseases of aging, osteoarthritis has a remarkably broad impact. Currently affecting about 15 to 20 million Americans, osteoarthritis is the most common joint disorder and is expected to increase by 50 percent over the next two decades with the aging of the population. With no effective treatments, current management strategies for osteoarthritis focus on reducing pain and inflammation.

Osteoarthritis, also known as degenerative arthritis, is a disease that affects joint cartilage, the major weight-bearing "cushion" in joints. The disease results from a combination of wear and tear on cartilage and underlying age-related changes that causes cartilage to deteriorate. Joint trauma can also play a role. Osteoarthritis commonly affects the hands, spine, hips, and knees.

Asahara and other members his laboratory were interested in the question of why some people's joints age normally, while others' spiral toward disease.

The scientists suspected that microRNA could play a role. Once thought of as mere genetic helpers, microRNAs are now known to prevent proteins from being produced by messenger RNA, thus acting as an important layer of regulation for biological processes.

"Recent research findings indicate that non-coding RNA should be involved in our development and in diseases," said Asahara, "but we know little about the role of the non-coding RNA for age-related adult disorders."

Breaking New Ground

The team's interest in one type of microRNA in particular, miR-140, was piqued by other work ongoing in the lab, which was published last year. In this study, the team made the observation that miR-140—which is only expressed in cartilage—was reduced in cartilage samples from osteoarthritis patients. This led the team to hypothesize that miR-140 is a regulator in osteoarthritis pathology.

To test this idea, the team tried for several years to make targeted "knockout" mouse models that lacked miR-140. They finally succeeded.

With models lacking miR-140, the scientists were able to figure out its effects. Since the animals lacking miR-140 were short in stature, the scientists concluded that miR-140 affected bone formation during development. The mutant mice were also particularly prone to developing osteoarthritis, suggesting that miR-140 retarded the disease. In contrast, the scientists found, transgenic mice that overexpressed miR-140 were resistant to developing the condition.

The team's findings fit in well with other recent research showing that an enzyme called Adamts-5 is necessary for osteoarthritis progression; miR-140 is known to regulate Adamts-5.

The team continues to investigate to learn more about the factors that control miR-140, the proteins it affects, and potential drugs that might influence its action.

In addition to Asahara, Miyaki, and Sato, authors of the paper "MicroRNA-140 plays dual roles in both cartilage development and homeostasis," are Atsushi Inoue, Yoshiaki Ito, Shigetoshi Yokoyama, Fuko Takemoto, Tomoyuki Nakasa, Satoshi Yamashita, Shuji Takada, and Hiroe Ueno-Kudo of the National Research Institute for Child Health and Development in Japan, Yoshio Kato of the National Institute of Advanced Industrial Science and Technology in Japan, and Shuhei Otsuki and Martin Lotz of Scripps Research.

U.S. sources of funding for this project included the National Institutes of Health, the Arthritis National Research Foundation, and the Arthritis Foundation. Japanese sources of funding included the Japanese Ministry of Health, Labor, and Welfare; the Genome Network Project; National Institute of Biomedical Innovation, Research on Child Health and Development; and The Japan Health Sciences Foundation.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Keith McKeown | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>