Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team led by Scripps Research scientist identifies new gene for memory

09.09.2010
The findings could shed new light on human learning and neurological and psychiatric disorders

A team led by a Scripps Research Institute scientist has for the first time identified a new gene that is required for memory formation in Drosophila, the common fruit fly. The gene may have similar functions in humans, shedding light on neurological disorders such as Alzheimer's disease or human learning disabilities.

The study was published in the September 9, 2010 edition (Vol. 67, No. 5) of the journal Neuron.

"This is the first time we have a new memory and learning gene that lies outside what has been considered the most fundamental signaling pathway that underlies learning in the fruit fly," said Ron Davis, chair of Scripps Research Department of Neuroscience who led the study. "Since many of the learning and memory genes originally identified in the fruit fly are clearly involved in human neurological or psychiatric diseases, this discovery may offer significant new insights into multiple neurological disorders. We're definitely in the right ballpark."

The study shows that different alleles or mutant forms of the gene, known as gilgamesh (gish), are required for short-term memory formation in Drosophila olfactory associative learning – learning that links a specific odor with a negative or positive reinforcer.

Because Drosophila learning genes are known to be conserved in higher organisms including humans, they often provide new insights into human brain disorders. For example, the Drosophila gene known as dunce, which Davis helped identify several years ago, provided clues to the genetics of the devastating psychiatric condition of schizophrenia. Recent studies have revealed that the human version of the dunce gene is a susceptibility determinant for schizophrenia. In a similar way, any new learning gene identified in Drosophila, including gilgamesh, may provide new clues to genes involved in human neurological or psychiatric disorders.

"We're still early in the process of making connections between Drosophila memory and learning genes and the pathology of human disease," Davis said, "but it's already clear that many of these genes will provide important conceptual information and potential insights into human brain disorders. In addition, there is every reason to believe that their gene products will be one day become the target of new drugs to enhance cognition. Uncovering this new gene and its signaling pathway helps bring us that much closer to this goal."

New Gene, New Pathway

To identify the new gene, Davis and his colleagues used a novel screen for new memory mutants, looking for lines that showed abnormal learning when only one of two copies of the gene was mutant.

"We used a dominant screen because we realized that behavior such as learning and memory are very sensitive to gene dosage," Davis said. "That is, the mutation of just one copy of a gene involved in behavior is often sufficient to produce an abnormality."

The formation of new memories occurs, in part, through the activation of molecular signaling pathways within neurons that comprise the neural circuitry for learning, and for storing and retrieving those memories.

One of the things that makes the function of gish so interesting, Davis noted, is the fact that it is independent of mutations of the rutabaga gene, a Drosophila memory-learning pathway that is known to be essential for memory formation. The rutabaga mutants convert ATP, the energy chip of cells, into cyclic AMP or cAMP, which plays a critical role in olfactory learning in Drosophila.

"The cAMP pathway is the major signaling pathway used by Drosophila neurons to turn on other enzymes and genes that are necessary for memories to form," Davis said. "In fruit flies, memory and learning revolves around mutants of this pathway. It is fundamental to the process."

In the new study, gish provided an answer to a longstanding problem in Drosophila learning and memory research – the unexplained residual memory performance of flies carrying rutabaga mutations, which indicated the existence of an independent signaling pathway for memory formation. While other memory mutants have been identified, until the discovery of gish none have been shown to reduce the residual learning of mutant rutabaga flies.

Interestingly, the study found that the gish gene encodes a kind of casein kinase (which help regulate signal pathways in cells) called Iã (CKIã). This is the first time that this specific kinase has been cited as having a role in memory formation.

The identification of all signaling pathways that are engaged in specific neurons during memory formation and how they interact with one another to encode memories is an issue of great importance, Davis said, one that needs more exploration for a deeper understanding of memory formation and memory failure in humans.

"The truth is that we have an extremely sketchy understanding of what causes diseases like Alzheimer's," Davis said. "We need to understand a lot more than we do now about normal brain functions like memory and learning before we have a high probability of succeeding in the development of a cure."

###

The first author of the study, "Gilgamesh is required for Rutabaga-independent Olfactory Learning in Drosophila," is Ying Tan of Baylor College of Medicine. Other authors include Dinghui Yu and Jennifer Pletting of Baylor College of Medicine.

The study was supported by the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, Scripps Research currently employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Headquartered in La Jolla, California, the institute also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida. For more information, see www.scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>