Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team led by IU biologists confirms sunflower domesticated in US, not Mexico

16.08.2011
New genetic evidence presented by a team led by Indiana University biology doctoral graduate Benjamin Blackman confirms the eastern United States as the single geographic domestication site of modern sunflowers.

Co-authors on the findings published this week in Proceedings of the National Academy of Sciences include Blackman's advisor, IU Distinguished Professor of Biology Loren H. Rieseberg, and four others from Rieseberg's lab, as well as collaborators from Universidad Nacional Autonoma de Mexico and the University of Cincinnati.

Through a comprehensive examination of the geographic diversity in three recently identified early domestication genes of Helianthus annuus, the researchers also reported finding no DNA evidence to support suggestions based on archaeological evidence that a second, independent domestication event had occurred in Mexico.

"Our results affirm that the eastern United States was an independent center of plant domestication and that all known living cultivated sunflowers shared a common origin there," Blackman said.

Controversy over the domestication of H. annuus began when sunflower seeds were found at pre-Columbian archaeological sites. It was proposed that, along with being domesticated in eastern North America, an independent sunflower domestication occurred in Mexico. Alternatively, sunflower may have been dispersed from eastern North America into Mexico through trade routes established before Spanish colonization.

This new work confirms domestication took place in eastern North America, probably in the Mississippi River Valley in the region of present day Arkansas.

The team analyzed the sequence diversity of three genes -- c4973, HaFT1, and HaGA2ox -- that had been identified as candidates for domestication genes, as well as the diversity of 12 neutral markers, and identified patterns of diversity in Mexican domesticated and wild sunflowers consistent with all other domesticated varieties known to have originated from an eastern North American domestication site. The study looked at 60 sunflower populations from the U.S. and Canada and 31 from Mexico.

"Even though we made extensive new collections of wild and cultivated sunflowers native to Mexico that for the first time provided us with a powerful sample to test for a second origin, our results from multiple types of genetic data found strong evidence for just a single origin," Blackman said.

The analysis of hereditary molecular differences in the three sunflower genes shown to have experienced selective sweeps -- the loss or lowering of variation in DNA sequences due to artificial or natural selection -- confirmed that domesticated sunflowers grown in Mexico today are descended from the same cultivated genetic lineage as eastern North America domesticated sunflowers. All of those varieties, whether from Mexico or North America, carried sequences diagnostic for cultivation at the domestication at these loci, and genetic ancestry inferred from neutral markers scattered throughout the genome independently and unambiguously confirmed the same result.

A few qualifications remain, as the team could have missed finding a modern Mexican domesticated version descended from an independent Mexican lineage. There may have also been an ancient Mexican lineage that has since become extinct and for which no modern germplasm has survived. Some scientists have speculated that extinction could have been facilitated by the proposed role colonial Spanish Christians may have taken in eradicating sunflower as an important religious symbol to the solar-worshipping Aztecs, or recently by the substantial influx of seed imports made possible by the North American Free Trade Agreement.

"Although current archaeological finds indicate that ancient Mesoamericans cultivated sunflower before Spanish colonists arrived in the New World, more discoveries are needed to understand where and how quickly sunflower crop development spread in Mesoamerica and eastern North America," Blackman added.

Further insights will come, he said, not only from new archaeological finds but also from new DNA sequencing technologies capable of obtaining data from thousands of genes from these ancient samples. Such advances would deepen understanding of how nascent sunflower cultivars were related to each other and when newly identified domestication alleles spread throughout eastern North American and Mexico.

Blackman noted the findings had special significance for the researchers with connections to the IU College of Arts and Sciences' Department of Biology, as the department's late distinguished professor emeritus Charles Heiser, a pioneering authority on sunflowers, had argued strongly before his death in 2010 for the single-domestication scenario.

Additional co-authors on the paper included Robert Bye of the Universidad Nacional Autonoma de Mexico, and David Lentz, University of Cincinnati. Blackman is currently a post-doctoral scholar at Duke University, where co-author David Rasmussen is a graduate student. Co-author Harry Luton is a research assistant with Rieseberg at IU and Moira Scascitelli and Nolan Kane are now post-docs at University of British Columbia, where Rieseberg holds a dual appointment as a professor of botany. Blackman, Rasmussen, Scascitelli and Kane have all been members of Rieseberg's IU Bloomington lab.

Steve Chaplin | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>