Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team led by IU biologists confirms sunflower domesticated in US, not Mexico

16.08.2011
New genetic evidence presented by a team led by Indiana University biology doctoral graduate Benjamin Blackman confirms the eastern United States as the single geographic domestication site of modern sunflowers.

Co-authors on the findings published this week in Proceedings of the National Academy of Sciences include Blackman's advisor, IU Distinguished Professor of Biology Loren H. Rieseberg, and four others from Rieseberg's lab, as well as collaborators from Universidad Nacional Autonoma de Mexico and the University of Cincinnati.

Through a comprehensive examination of the geographic diversity in three recently identified early domestication genes of Helianthus annuus, the researchers also reported finding no DNA evidence to support suggestions based on archaeological evidence that a second, independent domestication event had occurred in Mexico.

"Our results affirm that the eastern United States was an independent center of plant domestication and that all known living cultivated sunflowers shared a common origin there," Blackman said.

Controversy over the domestication of H. annuus began when sunflower seeds were found at pre-Columbian archaeological sites. It was proposed that, along with being domesticated in eastern North America, an independent sunflower domestication occurred in Mexico. Alternatively, sunflower may have been dispersed from eastern North America into Mexico through trade routes established before Spanish colonization.

This new work confirms domestication took place in eastern North America, probably in the Mississippi River Valley in the region of present day Arkansas.

The team analyzed the sequence diversity of three genes -- c4973, HaFT1, and HaGA2ox -- that had been identified as candidates for domestication genes, as well as the diversity of 12 neutral markers, and identified patterns of diversity in Mexican domesticated and wild sunflowers consistent with all other domesticated varieties known to have originated from an eastern North American domestication site. The study looked at 60 sunflower populations from the U.S. and Canada and 31 from Mexico.

"Even though we made extensive new collections of wild and cultivated sunflowers native to Mexico that for the first time provided us with a powerful sample to test for a second origin, our results from multiple types of genetic data found strong evidence for just a single origin," Blackman said.

The analysis of hereditary molecular differences in the three sunflower genes shown to have experienced selective sweeps -- the loss or lowering of variation in DNA sequences due to artificial or natural selection -- confirmed that domesticated sunflowers grown in Mexico today are descended from the same cultivated genetic lineage as eastern North America domesticated sunflowers. All of those varieties, whether from Mexico or North America, carried sequences diagnostic for cultivation at the domestication at these loci, and genetic ancestry inferred from neutral markers scattered throughout the genome independently and unambiguously confirmed the same result.

A few qualifications remain, as the team could have missed finding a modern Mexican domesticated version descended from an independent Mexican lineage. There may have also been an ancient Mexican lineage that has since become extinct and for which no modern germplasm has survived. Some scientists have speculated that extinction could have been facilitated by the proposed role colonial Spanish Christians may have taken in eradicating sunflower as an important religious symbol to the solar-worshipping Aztecs, or recently by the substantial influx of seed imports made possible by the North American Free Trade Agreement.

"Although current archaeological finds indicate that ancient Mesoamericans cultivated sunflower before Spanish colonists arrived in the New World, more discoveries are needed to understand where and how quickly sunflower crop development spread in Mesoamerica and eastern North America," Blackman added.

Further insights will come, he said, not only from new archaeological finds but also from new DNA sequencing technologies capable of obtaining data from thousands of genes from these ancient samples. Such advances would deepen understanding of how nascent sunflower cultivars were related to each other and when newly identified domestication alleles spread throughout eastern North American and Mexico.

Blackman noted the findings had special significance for the researchers with connections to the IU College of Arts and Sciences' Department of Biology, as the department's late distinguished professor emeritus Charles Heiser, a pioneering authority on sunflowers, had argued strongly before his death in 2010 for the single-domestication scenario.

Additional co-authors on the paper included Robert Bye of the Universidad Nacional Autonoma de Mexico, and David Lentz, University of Cincinnati. Blackman is currently a post-doctoral scholar at Duke University, where co-author David Rasmussen is a graduate student. Co-author Harry Luton is a research assistant with Rieseberg at IU and Moira Scascitelli and Nolan Kane are now post-docs at University of British Columbia, where Rieseberg holds a dual appointment as a professor of botany. Blackman, Rasmussen, Scascitelli and Kane have all been members of Rieseberg's IU Bloomington lab.

Steve Chaplin | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>